Team:Guelph/

From 2008.igem.org


This is a template page. READ THESE INSTRUCTIONS.
You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki. You can find some examples HERE.
You MUST have a team description page, a project abstract, a complete project description, and a lab notebook. PLEASE keep all of your pages within your Team:Example namespace.


Subpages: <subpages /carotenoids >


Contents

Team Background and Philosophy

IGemGuelphPH.png


Project Abstract

Microbes are found in every nook and cranny of the entire planet, and multicellular organisms are no exception. Plants and animals are found to contain huge numbers of bacteria and fungi that help with nutrient absorption, produce beneficial compounds, fight off pathogens, or often are even pathogens themselves. We are interested in taking advantage of some of these microbes to engineer added functions into these microbes for the benefit or modification of the host organism. This might be called GM symbionts. On the human side, we would like to introduce the carotendoid metabolic genes from a well studied soil microbe called Erwinia urodevora into human intestinal microbes for production of the essential human nutrient, pro-vitamin A. Millions of humans suffer from vitamin A deficiencies across the world, resulting in blindness and death which could be mitigated by symbitic production of this important vitamin. A more basic project will focus on RNAi signal delivery by a corn plant endosymbiont to silence corn genes. Since microbes live in large stable populations within corn plants, it is believed that as individual bacteria grow and lyse within the plant host, they will release RNAi transcripts into the sensitive host during the entire life cycle of the plant, which will silence the targeted gene and show a phenotype indicating gene function. Bacterial Induced Gene Silencing (BIGS) will be a useful and quick alternative for plant functional genomic research.

Your team picture
Team Example 2


Home The Team The Project Parts Submitted to the Registry Modeling Notebook

(Or you can choose different headings. But you must have a team page, a project page, and a notebook page.)


Overall project

Microbes are found in every nook and cranny of the entire planet, and multicellular organisms are no exception. Plants and animals are found to contain huge numbers of bacteria and fungi that help with nutrient absorption, produce beneficial compounds, fight off pathogens, or often are even pathogens themselves. We are interested in taking advantage of some of these microbes to engineer added functions into these microbes for the benefit or modification of the host organism. This might be called GM symbionts. On the human side, we would like to introduce the carotendoid metabolic genes from a well studied soil microbe called Erwinia urodevora into human intestinal microbes for production of the essential human nutrient, pro-vitamin A. Millions of humans suffer from vitamin A deficiencies across the world, resulting in blindness and death which could be mitigated by symbitic production of this important vitamin. A more basic project will focus on RNAi signal delivery by a corn plant endosymbiont to silence corn genes. Since microbes live in large stable populations within corn plants, it is believed that as individual bacteria grow and lyse within the plant host, they will release RNAi transcripts into the sensitive host during the entire life cycle of the plant, which will silence the targeted gene and show a phenotype indicating gene function. Bacterial Induced Gene Silencing (BIGS) will be a useful and quick alternative for plant functional genomic research.

Project Details

The Experiments

1) Beta carotene producing intestinal microbes and plant endophytes


Team:Guelph/carotenoids


2) RNAi inducing corn endophytes (BIGS)

Team:Guelph/RNAi


Results

Sponsors