Engineering a Real-Time Living Biosensor: DNA Damage Caused by Ultra-Violet Irradiation

Craig Barcus, Jessamine Osborne, Erin Rosswurm, Janie Stine, Advisors: Dr. Jenna Rickus, Dr. Kari Clae, David Jaroch

1. Agricultural and Biological Engineering, 2. Biological Sciences, 3. Weldon School of Biomedical Engineering, 4. Bindley Bioscience Center, 5. Industrial Technology

Purdue University, West Lafayette, IN

Motivation
- 1 million Americans are diagnosed with skin cancer every year.¹
- Current products measure UV radiation level, not DNA damage.
- Our goal: create a real-time sensor of DNA damage

Approach
- "If-Then" Construct: Promoter + reporter
 - Promoter: recA of SOS system, part J22106 (activated for extreme DNA damage)
 - Reporter: lacZ, part J732017 (blue/white screening on X-gal)
- If DNA is damaged extensively, then transcription of β-gal
- Essentially a reporter-gene assay

Mechanisms
- **SOS Repair Mechanism**
 - SOS induction: UV exposure -> SOS signal
 - SOS genes: recA (Thymine dimer repair), X-gal (β-galactosidase)
 - SOS induction: UV exposure -> SOS signal
 - SOS genes: recA (Thymine dimer repair), X-gal (β-galactosidase)
 - SOS induction: UV exposure -> SOS signal
 - SOS genes: recA (Thymine dimer repair), X-gal (β-galactosidase)

Standard Assembly of the Part
- Received strain of Top 10 cells from iGEM:
 - LacZ (J732017) and recA promoter (J22106)
- Parts on standard pSB1A2 plasmids (AmpR)
- Grow up to make glycerol stocks
- Miniprep/Digest to check successful assembly

Building and Testing the System
- Ligulation with T4 ligase to create engineered plasmid
- Transformation of clone into lac-compliant cells
- Plate on Ampicillin/X-gal
- Dose with UV light to test abilities
- Miniprep/Digest to check successful assembly

Modeling the SOS System

Predicted Response Time: Tens of Minutes

Next Steps
- Perform additional experiments comparing UV radiation to SOS signal
- Compare and refine theoretical model
- Perform experiments with bacteria under UV with different SPF levels
- Develop a sustainable bacterial gel with a shelf life of >3 months
- Create a bio-sensor patch

Safety
- Negligible safety issues with project:
 - Pre-engineered E. coli cannot sustain a population outside lab environment
 - Biological Safety Level I only (low risk)
- Project reviewed and approved by the Institutional Biosafety Committee (IBC)
- IBC oversees rDNA research at Purdue
- No characteristics of protocol are considered hazardous

Acknowledgments
- Materials and Support Provided By:
 - Biology Teaching Labs
 - College of Agriculture
 - College of Engineering
 - College of Veterinary Medicine-SGM
 - Bindley Bioscience Center
 - Chohngogolosciences Center
 - Biological Safety Level I only (low risk)
- Funding Provided By:
 - College of Agriculture
 - College of Engineering
 - College of Veterinary Medicine-SGM
 - Bindley Bioscience Center
 - Chohngogolosciences Center

References