Coli. Touch
Implementation of pressure responsive genetic circuit in E.coli

Ryoji Sekine¹, Masashi Kajita², Yoshihisa Ananuma², Minori Karibe³, Ryoichi Sato², Sho Suzuki², Jun Takimoto³, Chiaki Kato³, Takako Sato³, Shotaro Ayukawa¹, Akio Kobayashi¹, Masahiko Uchiyama¹, Masayuki Yamamura¹, Daisuke Kiga¹,⁴
¹-Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, ²School of Bioscience and Bioengineering, Tokyo Institute of Technology, ³Japan Agency for Marine-Earth Science and Technology, ⁴Japan Science and Technology Agency PRESTO

Introduction
New input: Pressure
- Previous iGEM projects
- Heat
- Small molecules
- Light
- Our works

Advantage of pressure
- Heat, Small molecules, Light
- Pressure

1. Pressure induction
 tet promoters are known as pressure responsible ones
 [T. Sato et al., 1995]
 - Constructed
 - P₄₅-GFP
 - Tet promoter (P₄₅)
 - RBS
 - GFP
 - Terminator
 - On pSB6

 How to press
 1. Set the display in pressure vessel
 2. Cap the vessel
 3. Apply pressure to 30 MPa
 4. Cultivate at 37 °C

 Result of pressure induction

2. Touch display
 - We planned to create the touch display with many holes.
 - Apply 30 MPa pressure to prototype - touch display (two holes)

 Image of touch display

3. Low pressure-inducible promoter
 Previous study and problem
 Pressure response of P₄₅
 - CAT activity (unit/mg) vs. Pressure (MPa)

 Results of sequencing

 Conclusion
 1. Pressure induction: we constructed pressure-inducible genetic circuit and measured its pressure response.
 2. Touch display: we created the prototype - touch display.
 3. Low pressure-inducible promoter: We confirmed the feasibility of the experimental scheme for the development of low pressure inducible promoter.
 4. Write/Erase cycle: the feasibility of implementation of the Write/Erase cycle was confirmed using numerical analysis and measurement of the critical parameter.

Future work
1. Pressure induction: Confirm pressure response of the lac promoter.
2. Touch display: Create finished product of touch display.
3. Low pressure-inducible promoter: Screen promoter mutants and LacI mutants.
4. Write/Erase cycle: Construct the genetic circuit

Acknowledgements
We thank Hideki Kobayashi, Tadashi Maruyama, Shoji Takeuchi, Tetsuya J. Kobayashi, Yasunori Aizawa, Shigehisa Hirose, Akira Kudo, Ken Kurokawa, Satoshi Nakamura, Hiroyuki Ohta, Makio Tokunaga, Hiroaki Wachi and Hideya Yuasa for their technical advices. This work is supported by the Art and Crafts Education and Research Support Center and the School of Bioscience and Biotechnology, Tokyo Institute of Technology.

Mathematical model

The feasibility of implementation of Write/Erase cycle

Numerical analysis to identify upper limit

We can implement Write/Erase cycle