Efficient production of mussel adhesive proteins using *e. coli* and crescentic *catalbacter*

Nora Yuvel, Daniel Choi, Jim Einholz, Parijit Mackey, Rob McConkey, Damion Wang, Soren Yeaden | University of Chicago

Abstract
Our research group is interested in engineering *e. coli* and catalbacter to express recombinant proteins. By 2070 and others in the synthetic biology field are making progress towards achieving these goals.

Introduction to synthetic biology
Synthetic biology is a fast emerging interdisciplinary field that combines principles from computer science, chemistry, and biology to design and build novel biological systems that perform specific functions.

Regulatory standard biological parts
Regulatory standard biological parts are small, well-characterized modules of biological function that can be easily integrated into novel biological systems.

Creating a block

Adhesive bacteria

DOPA

Tyrosinase

Future directions

Methods

Modification
Modification of galactose operon. To modulate expression, plasmid carrying the galactose operon (pBAD) is used. The expression of the galactose operon is regulated by the presence of galactose in the medium. When galactose is present, the operon is expressed, leading to the production of the desired protein.

Characterization of MAPs
- **Bacterial growth** and Western blot analysis. The presence of recombinant proteins is confirmed by measuring the growth of bacteria in the presence of the protein of interest.
- **Immunoblotting** using specific antibodies raised against the recombinant protein.

References

Acknowledgements
This work was supported by the National Institutes of Health (NIH) grants NIGMS 1R01GM110917-01A1 and NIGMS 1R01GM110917-01A1.