iGEM 08
Team ESBS Strasbourg

Cell division counter

Team: Paul Bourgine, Sandra Dittmann, Katja Karstens, Manuel Gersbacher, Marius Müller, Robin Sorg, Michael Wild
ESBS Strasbourg
Cell division counter

- Binary system
- Extendable
 ⇒ Cell cycle dependent toggle switch
- Chassis: Yeast
Applications

- Detection of abnormal growth (cancer)
- Coupling to cell cycle specific factors
- Age determination in cell culture
- ...

iGEM 08
Team E58S Strasbourg
The Project

In Detail ...
external signal

counting device

PoPS

Generation No.
external signal

inducer

0 – module

1 – module

PoPS

Generation No.
inducer → sA0 → R0 → cA0 → 1 – module
inducer → sA0 → R0 → cA0

external signal

internal signal

APC

1 – module

PoPS

Generation No.
external signal

sA0 → R0 → cA0

internal signal
APC

1 – module

PoPS

0 1 2 3 4 5 6

Generation No.
external signal

internal signal

APC

sA0 — R0 — cA0

sA1 — R1 — cA1
Modeling

Characterization of parts ...
Modeling: questions to be solved

I. Protein half life time
dilution sufficient? PEST?

II. APC degradation motif
time frame of activity?

III. Promoter construction
sA/cA/R expression strength?
N° of operator repetitions?
same operator for A and R?
Modeling: promoter construction

One-operator system:

\[
\frac{dX}{dt} = s + \frac{\beta \cdot \Lambda^n}{K^n_A \left(1 + \frac{R^n}{K^n_R}\right)} + \Lambda^n
\]

Two-operator system:

\[
\frac{dX}{dt} = s_R + \left(\frac{s_A + \frac{\beta \cdot \Lambda^n}{K^n_A + \Lambda^n}}{K^{-n}_R + R^{-n}}\right) \cdot R^{-n}
\]
Modeling: cell cycle dependent toggle switch

binary expression pattern

0 – specific expression 1 – specific expression

TF concentrations

Repressor0 Repressor1 cActivator0 cActivator1
Outcome

What we reached to do ...
Modular promoter

- 3-7 operator copies
- Mutated Cyc1 promoter
external signal

internal signal

APC

sA0 → R0 → cA0

sA1 → R1 → cA1

Generation No.

PoPS
Parts construction
New fusion vector

Phillips and Silver (2006)
New fusion vector

BioBrick I
TCTAGA
AGATCT

in frame

BioBrick II
CTAGA
T
ACTAGT
TGATCA

BioBrick I
ACTAGA
TGATCT

BioBrick II
- VP16 activator domain for eucaryotic polymerase III from Herpes Simplex Virus
- repression domain of S. cerevisiae transcription factor TUP1
- DNA binding domains with specific bait sequences (tetR, cl, lacI, lexA, Gal4)
- degradation motifs of hsl1 & cln2
Measurement

- Optimal arrangement of domains
- Strength of the promoters
- Functioning of the tags
Optimal arrangement of domains
Parts submitted

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBa_K105000</td>
<td>Plasmid</td>
<td>pSB1A2_fusion</td>
<td>2077</td>
</tr>
<tr>
<td>BBa_K105001</td>
<td>Coding</td>
<td>VP16 - eucaryotic activation domain</td>
<td>276</td>
</tr>
<tr>
<td>BBa_K105002</td>
<td>Coding</td>
<td>TUP1 - repressor domain for transcription factors in yeast</td>
<td>615</td>
</tr>
<tr>
<td>BBa_K105003</td>
<td>Coding</td>
<td>tetR - DNA binding domain</td>
<td>617</td>
</tr>
<tr>
<td>BBa_K105004</td>
<td>Coding</td>
<td>cl - repressor from E.coli phage lambda</td>
<td>707</td>
</tr>
<tr>
<td>BBa_K105005</td>
<td>Coding</td>
<td>lexA - DNA binding domain</td>
<td>603</td>
</tr>
<tr>
<td>BBa_K105006</td>
<td>Coding</td>
<td>lacI - DNA binding domain</td>
<td>1077</td>
</tr>
<tr>
<td>BBa_K105007</td>
<td>Coding</td>
<td>Gal4 - DNA binding domain</td>
<td>438</td>
</tr>
<tr>
<td>BBa_K105009</td>
<td>Coding</td>
<td>ECFP, yeast optimized for fusion proteins</td>
<td>744</td>
</tr>
<tr>
<td>BBa_K105010</td>
<td>Coding</td>
<td>mCherry, Yeast optimized for fusion proteins</td>
<td>735</td>
</tr>
<tr>
<td>BBa_K105011</td>
<td>Coding</td>
<td>mOrange, Yeast optimized for fusion proteins</td>
<td>735</td>
</tr>
<tr>
<td>BBa_K105012</td>
<td>Coding</td>
<td>linker</td>
<td>30</td>
</tr>
<tr>
<td>BBa_K105013</td>
<td>Tag</td>
<td>cin8 - cell cycle specific degradation tag in yeast</td>
<td>228</td>
</tr>
<tr>
<td>BBa_K105015</td>
<td>Tag</td>
<td>hsl1 - cell cycle dependant degradation tag in yeast</td>
<td>618</td>
</tr>
<tr>
<td>BBa_K105016</td>
<td>Generator</td>
<td>Leu2 - Beta-isopropylmalate dehydrogenase of yeast</td>
<td>1829</td>
</tr>
<tr>
<td>BBa_K105017</td>
<td>Generator</td>
<td>Ura3 - Orotidine-S-phosphate decarboxylase</td>
<td>1121</td>
</tr>
<tr>
<td>BBa_K105020</td>
<td>Regulatory</td>
<td>tetR - operator</td>
<td>29</td>
</tr>
<tr>
<td>BBa_K105021</td>
<td>Regulatory</td>
<td>cl - operator</td>
<td>27</td>
</tr>
<tr>
<td>BBa_K105022</td>
<td>Regulatory</td>
<td>lex A - operator</td>
<td>31</td>
</tr>
<tr>
<td>BBa_K105023</td>
<td>Regulatory</td>
<td>lacI - operator</td>
<td>25</td>
</tr>
<tr>
<td>BBa_K105024</td>
<td>Regulatory</td>
<td>Gal4 - operator</td>
<td>27</td>
</tr>
<tr>
<td>BBa_K105025</td>
<td>Terminator</td>
<td>Adh1 terminator</td>
<td>225</td>
</tr>
<tr>
<td>BBa_K105026</td>
<td>Regulatory</td>
<td>Gal1 promoter</td>
<td>549</td>
</tr>
<tr>
<td>BBa_K105027</td>
<td>Regulatory</td>
<td>cyc100 minimal promoter</td>
<td>103</td>
</tr>
<tr>
<td>BBa_K105028</td>
<td>Regulatory</td>
<td>cyc70 minimal promoter</td>
<td>103</td>
</tr>
<tr>
<td>BBa_K105029</td>
<td>Regulatory</td>
<td>cyc43 minimal promoter</td>
<td>103</td>
</tr>
<tr>
<td>BBa_K105030</td>
<td>Regulatory</td>
<td>cyc28 minimal promoter</td>
<td>103</td>
</tr>
<tr>
<td>BBa_K105031</td>
<td>Regulatory</td>
<td>cyc16 minimal promoter</td>
<td>103</td>
</tr>
</tbody>
</table>
Acknowledgments

› Dr. Mariel Donzeau
› Michael Zimmermann & Martin Dressler
› Prof. Peter Philippsen
› Prof. Bruno Chatton & Lab

› Dr. Vincent Phalipp & Lab
› Prof. Haiech & Maria
› Prof. Claude Kedinger
› The iGEM Freiburg Team
› Martin Cerff, Flo Rau & Tony Wiciok
Thank you for your attention!

Merci ! Danke !