Constructing a Biological Ethanol and Methanol Sensor

Missouri University of Science and Technology
Missouri S&T 2008 iGEM Team

Biological Sciences
- Michelle Brosnahan
- Cory Cheatham
- Gregory Schmoll
- Daniel Schwent

Che/Bio Engineering
- Marcus Hayer
- Rachel Klapper
- Patrick VerSteeg
- Brian Pink
- Shradha Samuel
- Jackie Schneider
- Barbi Wheeldon

Advisors: Dr. Katie Shannon and Dr. Dave Westenberg
Missouri University of Science and Technology

Formerly…

University of Missouri-Rolla

Formerly…

The Missouri School of Mines
Lots of science majors…

TONS of engineering students.
iGEM is only one of many undergraduate student research teams which include:

- The Solar Car, Robotics, and Concrete Canoe Teams

Started in 2006: small, but growing organization

Cross-disciplinary

- Biological Sciences
- Chemical and Biological Engineering

University-wide involvement
Project Motivation

- St. Patrick: Patron Saint of Engineers
Project Motivation

Celebration!

Sad Pat 😞
Motivation

- Biological Breathalyzer
- Ethanol responsive gene
 - AOX1 promoter
 - Ethanol/Methanol metabolism of yeast
- Expanded project into an ethanol/methanol sensor
The Project

- Determine the concentration of ethanol and/or methanol in a closed system

- Possible applications
 - Home brewing
 - Use for monitoring gasoline additives
 - Methanol fermentation processes
Background

- Based on metabolic pathway of *P. pastoris*
 - Diauxic metabolism for MeOH and EtOH
 - EtOH preferred

Growth and Carbon utilization of *P. pastoris*
Methanol Metabolism

- Alcohol Oxidase (AO) Enzyme
 - First key enzyme in MeOH utilization pathway
 - Two related AO enzymes produced by two separate genes: AOX1 and AOX2
 - AOX1 mRNA has higher steady-state level
 - Majority of AO enzyme produced from AOX1
Project Outline

- Join AOX1 promoter to RFP gene
- Place this system in *E. coli*
- Introduce *E. coli* cells to EtOH and MeOH
- Preferential consumption of all EtOH
 - No Fluorescence
- Secondary consumption of MeOH
 - AOX enzyme expressed
 - Fluorescence
Isolation of AOXI promoter

• Checked for standard enzyme cutting sites within AOX1 promoter

• Amplified AOXI promoter (from pPIC3K vector) using PCR

• Flanked AOXI promoter with appropriate restriction sites using primers
Isolation of AOXI promoter

• Cloned PCR product into pCR2.1 vector
Isolation of AOXI promoter

- Transformed pCR2.1 vector with promoter into competent cells

LacZ gene → β-galactosidase → cleavage of x-gal → Blue Pigment
Checking AOX1 promoter clones

- Separated AOXI promoter from pCR2.1 plasmid using EcoRI
Preparation of RFP vector

- Obtained RFP vector (BBa_J61002) from registry
- Transformed RFP vector into *E. coli* cells to amplify
Preparation of RFP vector

- Extracted amplified RFP vectors
Isolating AOXI promoter and RPF vector

Digested AOXI promoter clone and RFP vector with XbaI and SpeI
Ligation of AOXI promoter and RFP vector

- Performed overnight ligation at 16 °C
- Transformed ligation into *E. coli* cells
Current Stages of Research

- Screening cells to determine which ones contain the ligated AOX1 promoter and RFP vector
- Improving ligation method using controls and purifications.
Testing

Direct Measurement of Methanol

Length of time cells fluoresce

Indirect Measurement of Ethanol

Length of time before cells fluoresce
Overview

Creating a Correlation:

1. Introduce known concentration of ethanol and methanol to cells’ environment

2. Time until fluorescence is detected

3. Relate time to concentration of ethanol present in environment

\% Ethanol = ???
Obstacles

- Ligation of AOX1 and RFP vector
- Screening and controls
- Functionality of the part in *E. coli*
- Indirect measurement of ethanol
- Response, degradation, and lag time
Minimum concentration of ethanol
Maximum concentration of methanol
Lag time
 - Protein synthesis/folding rates
 - Rate of protein degradation
Minimum amount of enzyme before reaching detectable levels of fluorescence
Implementation in real industrial process?
What Have We Gained?

- Skills and techniques
- Collaboration and Team work
- Job opportunities
- Ties with companies
Acknowledgements

Special Thanks:

Dr. Dave Westenberg and Dr. Katie Shannon from Missouri University of Science and Technology for their guidance and support

Dr. Ben Glick from the University of Chicago for his generous gifts

Thanks to the following as **funding sources** for our **research** and **participation in the iGEM competition** at Massachusetts Institute of Technology:

- Missouri S&T Opportunities for Undergraduate Research Experience Program
- Missouri S&T Department of Biological Sciences
- Missouri S&T Department of Chemical and Biological Engineering
- Missouri S&T Materials Research Center
- Missouri S&T Center for Environmental Science and Technology
- JE Dunn Construction
- Morphologynet
- MidSci Scientific
- Monsanto Corporation
- Dr. Chang-Soo Kim
- Pizza Inn of Rolla
References

3. **International Genetically Engineered Machines Competition (iGEM).**
 http://igem.org