Mutating the *Synechocystis* sp. PCC6803 RuBisCO promoter as a means of controlling levels of gene expression in cyanobacteria

Introduction:

Cyanobacteria are unique amongst bacteria in their ability to fix carbon in non-cyclic photosynthesis. RuBisCO, the enzyme responsible for carbon fixation in the Calvin-Benson cycle, is specific to the light metabolism, making the mechanism of its expression a prime target for light-dependent gene regulation ^[1].

Background/significance:

RuBisCO is encoded by the *rbc* operon in *Synechocystis* sp. PCC 6803 (Figure 1)^[2]. The 2600 bp operon includes the genes for the large and small subunits of RuBisCO, *rbcL* and *rbcS*, as well as a chaperonin-like protein, *rbcX*, involved in the folding of rbcL (Figure 2).

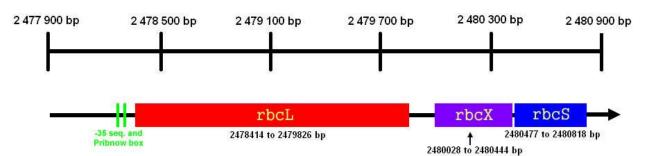


Figure 2: Organization of *rbcLXS* in *Synechocystis* sp. PCC 6803.

The *rbc* promoter is a 250 bp segment that regulates the transcription of all three genes in the operon ^[3]. Not much is known about the promoter, or its regulation. -35 and -10 consensus sequences, involved in the initiation of transcription, have been identified and are very similar to those other bacterial species ^[3]. An A-T rich region, -250 to -215 upstream of the transcriptional start site, is a putative binding site of a cis-acting CO₂ response element that upregulates *rbc* expression at low CO₂ concentrations ^[4]. rbcR, the only *rbc* operon regulator identified in PCC 6803, is a LysR type transcription factor that activates *rbcLXS* expression ^[2,5]. LysR family transcriptional regulators recognize a T-N₁₁-A DNA motif flanked by 3 bp inverted repeats upstream of the regulated gene.

The *rbc* promoter is a strong promoter previously targeted for its ability to effectively express foreign genes in cyanobacteria. It has been employed by *Escherichia coli*/cyanobacteria shuttle vectors such as pAQ-EX1 and pARUB19^[6,7]. Controlling the strength of the *rbc* promoter not only allows for the control of exogenous gene expression, but also creates a gradient promoter system with finer regulation than on/off promoters such as *lac* or *trp*. The gradient created by the various promoter strengths can also be used to measure the efficiency of other cyanobacterial promoters.

1	TCTAATTAGA	AAGTCCAAAA	ATTGTAATTT	AAAAAACAGT	CAATGGAGAG	CATTGCCATA
61		TCCCCTGCGT				
121		TCTCGCAACC				
181		GCCAAATTTC				
241		ATGGTACAAG				
301	GACCTACTAT	ACCCCCGACT	ACACCCCCAA	GGATACCGAC	CTGCTCGCCT	GCTTCCGTAT
361	GACCCCCCAA	CCGGGTGTAC	CTGCTGAAGA	AGCCGCTGCT	GCGGTGGCCG	CTGAGTCTTC
421	CACCGGTACC	TGGACCACCG	TTTGGACTGA	СААССТААСТ	GACTTGGACC	GCTACAAAGG
481	TCGTTGCTAT	GACCTGGAAG	CTGTTCCCAA	CGAAGATAAC	CAATATTTTG	CTTTTATTGC
541	CTATCCTCTA	GATTTATTTG	AAGAAGGTTC	CGTCACCAAC	GTTTTAACCT	CTTTGGTCGG
601	TAACGTATTT	GGTTTTAAGG	CTCTGCGGGC	CCTCCGTTTA	GAAGATATTC	GTTTTCCCGT
661	TGCTTTAATT	AAAACCTTCC	AAGGCCCTCC	CCACGGTATT	ACCGTTGAGC	GGGACAAATT
721	АААСАААТАС	GGTCGTCCTC	TGCTTGGTTG	TACCATCAAA	CCCAAACTTG	GTCTGTCCGC
781	CAAGAACTAC	GGTCGGGCTG	TTTACGAATG	TCTCCGGGGT	GGTTTGGACT	TCACCAAAGA
841	CGACGAAAAC	ATCAACTCCC	AGCCCTTCAT	GCGTTGGCGC	GATCGTTTCC	TCTTCGTTCA
901	AGAGGCGATC	GAAAAAGCCC	AGGCTGAGAC	CAACGAAATG	AAAGGTCACT	ACCTGAACGT
961	CACCGCTGGC	ACCTGCGAAG	AAATGATGAA	ACGGGCCGAG	TTTGCCAAGG	AAATTGGCAC
1021	CCCCATCATC	ATGCATGACT	TCTTCACCGG	CGGTTTCACT	GCCAACACCA	CCCTCGCTCG
1081	TTGGTGTCGG	GACAACGGCA	TTTTGCTCCA	TATTCACCGG	GCAATGCACG	CCGTAGTTGA
1141	CCGTCAGAAA	AACCACGGGA	TCCACTTCCG	GGTTTTGGCC	AAGTGTCTGC	GTCTGTCCGG
1201	CGGTGACCAC	CTCCACTCCG	GTACCGTGGT	TGGTAAATTG	GAAGGGGAAC	GGGGTATCAC
1261	CATGGGCTTC	GTTGACCTCA	TGCGCGAAGA	TTACGTTGAG	GAAGATCGCT	CCCGGGGTAT
1321	TTTCTTCACC	CAAGACTATG	CCTCCATGCC	TGGCACCATG	CCCGTAGCTT	CCGGTGGTAT
1381	CCACGTATGG	CACATGCCCG	CGTTGGTGGA	AATCTTCGGT	GATGATTCCT	GCTTACAGTT
1441	TGGTGGTGGT	ACTTTGGGTC	ACCCCTGGGG	TAATGCTCCC	GGTGCAACCG	CTAACCGTGT
1501	TGCTTTGGAA	GCTTGTGTTC	AAGCTCGGAA	CGAAGGTCGT	AACCTGGCTC	GCGAAGGTAA
1561		CGGGAAGCCT				
	GAAAGAGATC					
1681	CGGAGTTGTA	CTCGTCCGTT	AAGGATGAAC	AGTTCTTCGG	GGTTGAGTCT	GCTAACTAAT
	TAGCCATTAA					
	TCAGCCAAAA					
	TAGAGTGTTC					
1921		CAAGCCGTTC				
1981		TTAAACCAGT				
2041		CTGGATGAAA				
2100		TCAGTGTTAG				TAGCGGAATC
2161		CACCGCCGCC				
2221		TCGGAAACCT				
2281		CAGCAAGGAA				
2341		TTTCTTACCT				
2400		ACCAGGGCTT				
2461		GGACCATGTG				
2521		TACGGGAATG				
2581	TTCGACAATA				TCCACAAACC	
2641	CAAGGCCGTT	ACTAAGTTAC	AGTTTTGGCA	ATTACTAAAA	AACTGACTTC	AATTC

Figure 1: Nucleotide sequence of the *Synechocystis* sp. PCC 6803 *rbc* operon. The promoter sequence is located at 1 to 250. Elements of the *rbc* promoter include: CO_2 element (pink), -35 and -10 consensus sequences (green), transcriptional start site (highlighted in purple), and ribosomal binding site (light blue). Genes encoded by the *rbc* operon are *rbcL* (red), *rbcX* (purple), and *rbcS* (blue). 3' inverse repeats signal transcription termination (yellow).

Objective:

To create a gradient of down-regulated RuBisCO promoters in *Synechocystis* sp. PCC 6803 by mutating the -35 and/or -10 consensus sequences in the *rbc* promoter. Promoter strength will be measured two ways: directly, as PoPS (polymerase per second), and indirectly, by the intensity of fluorescence produced by the reporter gene, *luxCDABE*. The promoters (and the reporter gene, if not already available) will be created in BioBricks format.

Materials and Methods:

Step 1: Isolating and characterizing the *rbcLXS* promoter

The *rbc* promoter will be isolated from the 3.6Mb *Synechocystis* sp. PCC6803 genome using PCR and subcloned in *Escherichia coli*. To limit the number of factors affecting *rbc* promoter activity, a second promoter sequence will be isolated, without the 5' AT-rich region that allows for promoter regulation by CO₂ levels. Promoter strength will be assessed using a β -galactosidase assay. The truncated *rbc* promoter will be ligated with *lacZ* (BBa_I732017), inserted into pRL1383a, and conjugated into PCC6803. Efficiency of promoter repression by _____ in the absence of light will be tested by expressing this system in PCC6803 incubated in darkness. A Western blot will be performed to determine the absence/presence of *lacZ*. Promoter repression will be crucial if the promoter is to function effectively as an on/off switch for gene expression.

Step 2: Mutation of the -35 and -10 consensus sequences

The critical role played by the -35 and -10 consensus sequences make them prime targets for mutagenesis. Site-directed mutagenesis will be used to introduce single base pair substitutions in the -35 and/or -10 consensus sequences to alter promoter strength. Mutated promoters will be evaluated two ways:

- By ligating the mutated promoters with a reporter gene and measuring the expression of that gene. *luxCDABE* will be used at this step, if available; if not, Cyan Fluorescent Protein, BBa_E0026, will be utilized. Alternatively, if a fluorometer is not yet available, levels protein expression will be measured using metal affinity chromatography (protein will be 6-His tagged).
- 2) By measuring PoPS.

Step 3: BioBricks

The two types of BioBricks created will be utilized to construct a light-controlled expression system in PCC6803 (Figure 3).

Figure 3: Proposed light-controlled expression system in Synechocystis sp. PCC6803.

In the proposed system, the *lux* operon (from *Photorhabdus luminescens*) will be inversely expressed compared to RuBisCO. In the presence of light, the *rbc* promoter will be activated in PCC6803, causing the expression of the lac repressor, *lacI*. LacI will repress the activity of the lac promoter, and in turn, the transcription of the *lux* operon. Although lacI will be tagged with a LVA degradation tag to prevent accumulation of the repressor, a lower strength *rbc* promoter is desired to limit system stress by unnecessary lacI production. In the absence of light, the *rbc* promoter will be turned "off," allowing for the expression of *luxCDABE*.

The indirect control of light production by the *rbc* promoter may not be as effective as proposed. The regulation by the *rbc* promoter is diluted through at least two different gene elements, and the success of the system is contingent upon both lacI and the *lac* promoter functioning exactly as intended.

Timeline:

References:

- 1. Stanier, R.Y. and Cohen-Bazire, G. "Prokaryotes: The Cyanobacteria." *Annual Review of Microbiology* 31: 225-274 (1977).
- 2. <u>Synechocystis sp. PCC6803, complete genome</u>. NCBI. 10 June 2008. <<u>http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=NC_000911></u>.
- 3. Amichay, D., Levitz, R., and Gurevitz, M. "Construction of a *Synechocystis* PCC6803 mutant suitable for the study of variant hexadecameric ribulose bisphosphate carboxylase/oxygenase enzymes." *Plant Molecular Biology* 23: 465-476 (1993).
- Onizuka, T., Akiyama, H., Endo, S., Kanai, S., Hirano, M., Tanaka, S., and Miyasaki, H. "CO₂ Response Element and Corresponding *trans*-acting Factor of the Promoter for Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Genes in *Synechococccus* sp. PCC7002 Found by an Improved Electrophoretc Mobility Shift Assay." *Plant Cell Physiology* 43: 600-667 (2002).
- 5. Paoli, G., Soyer, F., Shively, J., and Tabita, F. R. "*Rhodobacter capsulatus* genes encoding form I ribulose-1,5-bisphosphate carbosylase/oxygenase (*cbbLS*) and neighboring genes were acquired by a horizontal gene transfer." *Microbiology* 144: 219-227 (1998).
- 6. Ikeda, K., Ono, M., Akiyama, H., Onizuka, T., Tanaka, S., and Miyasaka, H. "Transformation of the fresh water cyanobacterium *Synechococcus* PCC7942 with the shuttle-vector pAQ-EX1 developed for the marine cyanobacterium *Synechococcus* PCC7002." *World Journal of Microbiolgy and Biochemistry* 18: 55-56 (2002).
- 7. Takeshima, Y., Sugiura, M., and Hagiwara, H. "A Novel Expression Vector for the Cyanobacterium, *Synechococcus* PCC 6301." *DNA Research* 1: 181-189 (1994).