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Abstract

Photosynthetic activity and the composition of the photosynthetic apparatus are strongly regulated by environ-
mental conditions. Some visually dramatic changes in pigmentation of cyanobacterial cells that occur during
changing nutrient and light conditions reflect marked alterations in components of the major light-harvesting
complex in these organisms, the phycobilisome. As noted well over 100 years ago, the pigment composition of
some cyanobacteria is very sensitive to ambient wavelengths of light; this sensitivity reflects molecular changes in
polypeptide constituents of the phycobilisome. The levels of different pigmented polypeptides or phycobiliproteins
that become associated with the phycobilisome are adjusted to optimize absorption of excitation energy present
in the environment. This process, called complementary chromatic adaptation, is controlled by a bilin-binding
photoreceptor related to phytochrome of vascular plants; however, many other regulatory elements also play a role
in chromatic adaptation. My perspectives and biases on the history and significance of this process are presented
in this essay.

Abbreviations: AP – allophycocyanin; CCA – complementary chromatic adaptation; FdB – Fremyella diplosiphon
blue mutant; FdBk – Fremyella diplosiphon black mutant; FdG – Fremyella diplosiphon green mutant; FdR –
Fremyella diplosiphon red mutant; FdTq – Fremyella diplosiphon turquoise mutant; GL – green light; GUS – β-
glucoronidase PBS, phycobilisomes; PCc – constitutive PC; PC – phycocyanin; PCi – red light inducible PC; PCs
– sulfur stress-induced PC; PE – phycoerythrin; RL – red light

Introduction

The vivid pigmentation of cyanobacteria and red algae
is mostly a consequence of the presence of the phy-
cobilisome (PBS), an abundant major light harvesting
complex that under some conditions can account for
30% of total cellular protein (Tandeau de Marsac and
Houmard 1993; Grossman et al. 1995). This peri-
pheral membrane complex associates with the outer
surface of photosynthetic membranes, absorbing and
efficiently transferring excitation energy to the photo-
synthetic reaction centers (Porter et al. 1978; Searle
et al. 1978). In working with cyanobacteria for the

past 20 years, I have been continually impressed with
the extent to which PBS levels in the cell may vary
and curious about how environment conditions, and
especially light intensity, light quality and nutrient
levels control PBS biogenesis. Therefore, a substan-
tial part of my scientific efforts have been oriented
toward unraveling processes that govern PBS accumu-
lation in cyanobacteria, especially as a consequence of
changing light quality.

A description of the PBS was first reported in the
pioneering work of Gantt and Conti (1966a, b). Elisa-
beth Gantt demonstrated that the knob-like structures
that line the surface of the intracellular membranes
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Figure 1. Electron micrograph showing PBS lining the surfaces
of the thylakoid membranes of the unicellular cyanobacterium
Synechococcus. The image was kindly provided by Elisabeth Gantt.

Figure 2. Don Bryant (Pennsylvania State University) and Alex
Glazer (University of California, Berkeley), two prominent re-
searchers who pioneered work on PBS function, structure and
regulation.

in cyanobacteria and red algae were composed of the
pigmented phycobiliproteins and were responsible for
harvesting excitation energy. This work led to the isol-
ation of PBS and some of the clearest micrographs of
these light harvesting structures, both attached to and
stripped from thylakoid membranes. It also opened
the door for detailed analyses of PBS structure, pro-
tein and pigment composition and the mechanisms
by which energy is transferred from the PBS to the
photosynthetic reaction centers. Figure 1 presents an
electron micrograph of the unicellular cyanobacterium
Synechococcus in which the PBS can be seen lining
the surface of the thylakoid membranes (especially in
the lower half of the picture).

The PBS is composed of two domains, the rods
and core, each containing both pigmented and non-
pigmented polypeptides. The predominant pigmented

Figure 3. F. diplosipon grown on solid agar medium in red light,
(RL) (left) and green light (GL) (right). For a color version of this
figure, see color section in the front of the issue.

proteins in the rods are phycocyanin (PC) and phy-
coerythrin (PE) while the core contains allophycocy-
anin (AP). The chromophores that covalently bind to
the apo-phycobiliproteins are the linear tetrapyrroles
phycocyanobilin, phycourobilin or phycoerythrobilin.
Each phycobiliprotein is composed of a specific α and
β subunit that associate into heterodimers and sub-
sequently aggregate into trimers and hexamers. Non-
pigmented or linker polypeptides serve as structural
elements involved in the biosynthesis and stabilization
of PBS (Glazer 1982, 1985), but also facilitate effi-
cient flow of excitation energy to the photosynthetic
reactions centers. Specific lyases catalyze the attach-
ment of the chromophore to the apo-phycobiliprotein
(Fairchild et al. 1992; Fairchild and Glazer 1994;
Kahn et al. 1997). A number of investigators have
done marvelous work that has helped elucidate the
structure and function of PBS; these include Elizabeth
Gantt (Gantt 1981), Alex Glazer (Glazer and Cohen-
Bazire 1971; Glazer 1982; Glazer et al. 1983; Glazer
1985), Herbert Zuber (Glauser et al. 1992, 1993)
and Robert Huber (Schirmer et al. 1986), and a de-
tailed description of PBS structure can be found in
a number of review articles (Gantt 1981; Glazer et
al. 1983; Glazer 1985; Sidler 1994). Figure 2 shows
Alex Glazer (right) along with former student Don
Bryant (left). Don also contributed considerably to our
understanding of PBS structure and regulation (some
relevant references with respect to the subject of this
article are Bryant 1981; Bryant and Cohen-Bazire
1981), but has recently devoted much of his time to
elucidating Photosystem I structure and function.

Complementary chromatic adaptation from way
back

Reports in the late 1800s noted that certain cyanobac-
teria could change their pigmentation in response to
the wavelengths of light in the environment (Engel-
mann 1883a, b, 1884). This control of pigmentation
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in cyanobacteria by light was termed complementary
chromatic adaptation (CCA) (Gaidukov 1903) because
the pigmentation in the cell was modulated in a way
that was complementary to the wavelengths of light in
the environment; this process enables some cyanobac-
teria to efficiently absorb prevalent wavelengths of
light in the environment. CCA is observed in a number
of cyanobacteria examined in the natural environment
(Tandeau de Marsac 1977). A visually dramatic rep-
resentation of the process of chromatic adaptation is
presented in Figure 3, which shows F. diplosiphon
filaments after growth on solid medium in red light
(RL) and green light (GL). Following the initial obser-
vation of CCA, 90 years passed before the biochem-
ical analyses from Lawrence Bogorad’s laboratory
demonstrated that the phenomenon of CCA was a con-
sequence of changes in the PBS pigment-protein com-
position (Bennett and Bogorad 1971, 1973; Bogorad
1975). The development of molecular tools in the
1970 and 1980s created new opportunities for elucid-
ating the regulation of PBS biosynthesis. By the latter
part of the 1980s, most genes encoding PBS struc-
tural polypeptides were cloned, sequenced and their
expression characterized (summarized in Tandeau de
Marsac et al. 1988; Tandeau de Marsac and Houmard
1993; Grossman et al. 1994). Researchers who con-
tributed very significantly to isolating and characteriz-
ing genes encoding structural components of the PBS
were Don Bryant, Nicole Tandeau de Marsac and
members of my own group such as Peggy Lemaux
and Pamela Conley. The initial molecular character-
izations provided us with amino acid sequences of
numerous phycobiliproteins and linker polypeptides,
yielded a picture of the organization of phycobilipro-
tein and linker polypeptide genes on cyanobacterial
genomes (e.g., many of the genes are clustered and
some are co-transcribed), and provided the molecular
foundation for probing the control of PBS composition
by light quality.

The photobiology of complementary chromatic
adaptation

Action spectra for PC and PE synthesis during CCA
have been measured for both T. tenuis and F. dip-
losiphon by quantifying PE to PC ratios following
exposure of these cyanobacteria to narrow bands of
light wavelengths (Diakov and Scheibe 1973; Haury
and Bogorad 1977; Vogelmann and Scheibe 1978).
Maximal PE synthesis and minimal PC synthesis oc-

curred at 550 nm GL, while maximal PC synthesis and
minimal PE synthesis occurred at 640 nm RL. These
data suggested that the photoreceptor(s) controlling
CCA absorbed GL and RL (either through one or mul-
tiple chromophores), but elicited different responses in
the two light qualities. PC synthesis and assembly into
PBS dominate in RL while PE synthesis and assembly
into PBS dominate in GL. The mixture of RL and GL
in natural sunlight results in a PBS with intermediate
levels of PC and PE.

In F. diplosiphon a single gene set, designated
cpeBA, was shown to encode PE while three dis-
tinct gene sets encode PC; these have been desig-
nated cpcB1A1 for the constitutively expressed PCc,
cpcB2A2 for the red light inducible PCi and cpcB3A3
for PCs, which is only expressed during sulfur depriva-
tion conditions (Conley et al. 1985, 1986, 1988; Mazel
et al. 1986, 1988; Mazel and Marliere 1989). Changes
in phycobiliprotein content during CCA are due to
changes in levels of transcripts from both cpeBA and
cpcB2A2 (Conley et al. 1985; Mazel et al. 1986;
Oelmüller et al. 1988a, b). Since there is little change
in the half-lives of mRNAs encoding the phycobilipro-
teins in RL and GL (Oelmüller et al. 1988a), levels
of PE and PCi appear to be primarily regulated by
changes in rates of transcription of the cpeBA and
cpcB2A2 operons, respectively. Furthermore, genes
encoding the linker polypeptides associated with PCi,
cpcHID, are RL-inducible and co-transcribed with
cpcB2A2 (Lomax et al. 1987). And while genes en-
coding the linker polypeptides associated with PE,
cpeCDE, are also under the control of RL and GL,
they are not in the same operon as cpeBA (Feder-
spiel and Grossman 1990; Federspiel and Scott 1992).
My laboratory was most interested in understanding
the mechanisms controlling PBS gene expression and
there were two viable approaches for defining regu-
lators of this process; one approach involved using
biochemical techniques to identify factors that associ-
ate with promoters of phycobiliprotein genes, whereas
the other involved generating mutants with aberrant
CCA and identifying genes altered in the mutant
strains. We chose to concentrate on mutant generation
and analysis while much of the work in Tandeau de
Marsac’s laboratory was focused on using biochemical
approaches to identify regulatory elements.

In vivo and in vitro promoter analysis

Three polypeptides interact with the cpeBA promoter
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at the position −110 to +81 relative to the transcription
start site (Sobczyk et al. 1993). One binding protein
was RNA polymerase, which bound to sequences from
−40 to +15. Two other polypeptides, RcaA and RcaB,
also interacted with the cpeBA promoter and were only
detected in extracts of cells maintained in GL. RcaA
bound the sequence between −67 and −45 (which
contains a tandem 5′-TTGTTA-3′ repeat separated by
4 bp). The exact position of the binding site for RcaB
was not clear.

Protein-DNA interactions with the sequence of the
cpeBA operon extending from −67 to −44 were also
observed by Schmidt-Goff and Federspiel (1993) and
a protein designated PepB bound to the 5′-TTGTTA-
3′ direct repeat. Since RcaA and PepB appear to bind
the same sequences, they are likely to be identical
proteins. However, in the studies of Sobczyk et al.
(1993) the RcaA/PepB binding activity was only de-
tected in protein extracts from GL-grown cells while
in the studies of Schmidt-Goff and Federspiel (1993)
this activity was detected in extracts from both RL-
and GL-grown cells. These contradictory findings may
reflect different physiological states of the cells used in
the two studies.

Interactions of the cpcB2A2 promoter with soluble
F. diplosiphon proteins have also been examined. Pro-
teins from RL- and GL-grown F. diplosiphon cells
bind to the −298 to +25 region of the cpcB2A2 op-
eron (Casey and Grossman 1994). The major binding
region was associated with sequences between −162
and −126 from the cpcB2A2 transcription start site.
To determine if this region of the promoter was crit-
ical for CCA, the cpcB2A2 promoter region was fused
to the reporter gene β-glucuronidase (GUS) and ana-
lyzed for activity in vivo. This study demonstrated that
prominent binding at −162 to −126 was not critical
for CCA, but that a sequence extending from −76 to
+25 conferred RL/GL responsiveness to GUS expres-
sion. Furthermore, a protein only present in extracts
of RL-grown cells was shown to specifically bind this
region of the cpcB2A2 promoter, and a DNA fragment
from −37 to +25 was able to specifically compete for
this binding activity (Casey and Grossman 1994). The
−37 to +25 fragment contains the direct repeat 5′-
AAATTTGCACAAA-3′. All of these results suggest
that the sequence from −37 to +25 is involved in bind-
ing a protein present in RL-grown cells, and that this
binding may be critical for RL-specific transcription
from cpcB2A2.

Use of mutants and genetic techniques to dissect
complementary chromatic adaptation

My laboratory became very interested in using CCA
mutants to elucidate the mechanism of photoregu-
lation. A variety of CCA mutants were identified
in several laboratories (Cobley and Miranda 1983;
Tandeau de Marsac 1983; Bruns et al. 1989; Chiang
et al. 1992; Casey et al. 1997; Kehoe and Gross-
man 1996) and categorized into red (FdR), blue (FdB),
green (FdG) and black (FdBk) mutant classes. The
FdR mutants appear red under all conditions of illu-
mination and they constitutively synthesize PE while
PC is never synthesized. The FdB strains are bluer
than wild-type cells in RL and require more GL
to suppress PC synthesis than wild-type cells. The
FdG strains exhibit normal PCi expression, but the
genes encoding PE never become active. In the FdBk
mutants there are moderate levels of both PE and PC,
however, these levels remain the same in RL and GL.

At the time when we initiated work on these
mutants, critical resources became available that al-
lowed for successful genetic analysis of CCA. John
Cobley had generated an F. diplosiphon mutant that
grew as short filaments such that the colonies formed
by the cells remained discrete (the filaments did not
quickly spread over the entire plate). Furthermore,
John constructed a plasmid that could autonomously
replicate in F. diplosiphon, facilitating the stable in-
troduction of DNA into the organism (Cobley et al.
1993). We used these tools to complement the FdR
mutant and identified the gene rcaC (Chiang et al.
1992). The rcaC gene encodes a polypeptide of 651
amino acids with sequence similarity to response reg-
ulators of two component regulatory systems (for
reviews see Parkinson and Kofoid 1992; Appleby et
al. 1996). Often, response regulators are transcription
factors that bind specific promoter sequences and alter
the transcriptional activity of target genes; promoter-
binding activity may be regulated by the reversible
phosphorylation at a specific aspartate residue in the
receiver domain. Typically, perception of an envir-
omental signal (such as light) by a specific sensor
polypeptide would trigger a phosphorelay that results
in the activation of genes via the phosphorylation of a
response regulator. At this stage it is not clear if RcaC
directly interacts with the promoters of the phycobili-
protein operons or if its effect on CCA is indirect.
Furthermore, RcaC has several domains that may be
phosphorylated including an amino terminal aspart-
ate (D51), a carboxy-terminal aspartate (D576) and a
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Figure 4. David Kehoe (left), who identified the gene encoding a
phytochrome-like photoreceptor that controls complementary chro-
matic adaptation, and his daughter Ivy celebrating the colors of
fall. David is an Assistant Professor in the Biology Department at
Indiana University.

histidine residue present in an H block domain (often
present in sensor polypeptides); while D51 appears to
be critical for CCA, the role of D576 and H block
histidine are not clear (Kehoe and Grossman 1995).

Figure 5. Model showing some aspects of the phosphorelay control
of cpcB2A2 and cpeBA during complementary chromatic adaptation
in F. diplosiphon. The pigmented cells on solid medium are shown
at the bottom of the figure. Permission to use the figure was kindly
provided by the Journal of Biological Chemistry. RL – red light; GL
– green light.

Complemention of the FdBk class of mutants, first
achieved by David Kehoe, whose picture is shown in
Figure 4, led to identification of rcaE, a gene encod-
ing a protein of molecular mass of 74 kDa (Kehoe
and Grossman 1996). David worked in a concen-
trated manner to make transformation of F. diplosi-
phon highly efficient, which facilitated identification
of the genes that complemented our mutant strains.
RcaE has the four motifs at its carboxy terminus
typical of sensor polypeptides that are required for
histidine kinase activity (N, G1, F and G2) as well
as an H block. Surprisingly, the amino-terminal half
of the protein has a domain of approximately 140
amino acids that is similar to the tetrapyrrole chromo-
phore attachment domain of phytochromes; it appears
to contain the cysteine residue that covalently binds
to the tetrapyrrole chromophore. Recent biochemical
studies have demonstrated that RcaE covalently binds
a linear tetrapyrrole chromophore, that the cysteine is
required for the covalent attachment of the chromo-
phore to the protein, and that the protein isolated from
the cyanobacterium exhibits a RL-GL chromogenic
shift (K. Terauchi, B.L. Montgomery, A.R. Grossman,
J.C. Lagarias, D.M. Kehoe, submitted). These results
suggest that RcaE is a phytochrome-like sensor protein
that serves as the major photoreceptor for controlling
CCA.

Phytochrome-like photoreceptors have now been
identified in a number of different organisms. The
sequence of the entire Synechocystis sp. Strain
PCC 6803 genome (cyanobase) revealed several de-
duced polypeptides related to both RcaE and euk-
aryotic phytochromes. One of the genes encoding
a phytochrome-like protein, designated cph1, has
been expressed in vitro and is capable of binding a
chromophore and undergoing a photochromic shift
in absorbance (Yeh et al. 1997; Yeh and Lagarias
1998). These results suggest that there are several
phytochrome-related polypeptides in cyanobacteria
that act as photoreceptors and that probably govern
gene expression via a phosphorylation cascade. Phyto-
chromes in plants may also function by modulating
the phosphorylation of regulatory proteins. Lagarias
and colleagues have demonstrated that plant phyto-
chrome synthesized in yeast can undergo autophos-
phorylation, although this protein appears to have
serine/threonine kinase rather than histidine kinase
activity (Yeh and Lagarias 1998). Other phytochrome-
like proteins in bacteria appear to control growth under
certain light conditions (Wilde et al. 1997), carotenoid
synthesis (Davis et al. 1999) and phototactic move-
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ment (Bhaya et al. 2001; Wilde et al. 2002). Defining
the signal transduction processes that are triggered
by phytochrome-like photoreceptors in prokaryotes
is providing us with new insights into mechanisms
involved in light-regulated gene expression and the
evolution of phytochrome structure and function in
plants.

Interestingly, a number of the FdR mutants could
not be complemented by rcaC (Kehoe and Grossman
1997). Some of these were complemented by rcaF,
the gene immediately downstream of rcaE on the cy-
anobacterial genome. Translation of the RcaF protein,
which is homologous to response regulators, initiates
12 bp downstream of the translation termination site of
rcaE. However, like CheY and Spo0F, response regu-
lators involved in flagellar movement in E. coli and
sporulation in Bacillus subtilis, respectively (Clegg
and Koshland 1984; Ravid et al. 1986; Yamaguchi et
al. 1986; Wolfe et al. 1987; Perego and Hoch 1996),
RcaF is very small (124 amino acids) and does not
contain an identifiable output domain (it only has a
putative receiver domain). RcaF may act as an inter-
mediate in the phosphorelay pathway controlling CCA
and transfer phosphate groups from its cognate sensor
(presumably RcaE) to other response regulators such
as RcaC.

Model for the control of complementary chromatic
adaptation

As a consequence of the analysis of the rcaC, rcaF and
rcaE genes and the physiology of the various mutant
strains, we have proposed an initial model describing
CCA control (Kehoe and Grossman 1997); a simple
representation of this model is presented in Figure 5.
While RcaE, RcaF and RcaC are members of bacterial
two component regulatory systems and participate in
a phosphorelay system, it is a complex phosphorelay
that includes at least three proteins and at least five
potential phosphoacceptor domains. As shown in the
model, RL stimulates and GL inhibits the transfer of
phosphoryl groups along the phosphorelay pathway.
RcaE is a phytochrome-like photoreceptor that per-
ceives the light signal. We propose that RL triggers
autophosphorylation of RcaE followed by transfer of
the phosphoryl group to the response regulator RcaF
(which may also serve as an entrance point for phos-
phoryl donors other than RcaE). Phosphorylated RcaF
then transfers the phosphoryl group to the H block
(histidine phosphotransfer domain) of RcaC, which
can then pass the phosphoryl group to either the amino

or (perhaps) carboxy terminal aspartate of the receiver
domain. While the amino terminal receiver domain of
RcaC is critical for CCA (Kehoe and Grossman 1995),
the role of the carboxy terminal receiver domain is un-
clear, although it may help fine tune the system with
respect to other environmental conditions.

But there is much more to the CCA story, which is
being actively pursued by a number of investigators in-
cluding David Kehoe and John Cobley. There appears
to be some form of control exerted on cpcB1A1 (Kahn
and Schaefer 1997; Manna et al. 2000); thus the con-
stitutive PCc gene may also be modulated by specific
environmental conditions. Furthermore, a regulatory
factor has been identified that is specifically involved
in the control of cpeBA. Mutants that exhibit normal
regulation of cpcB2A2 and cpeCDE, but fail to accu-
mulate cpeBA mRNA in GL, have been identified and
designated turquoise (FdTq) mutants (Seib and Ke-
hoe 2002). Genetic complementation of these mutants
resulted in the isolation of cpeR, which encodes a
protein with limited sequence similarity to the PP2C
class of protein serine/threonine phosphatases. The
cpeR gene is located downstream of and perhaps co-
transcribed with cpeCDE (Cobley et al. 2002), which
has interesting implications with respect to regulation.
Furthermore, there is still a low level of increased tran-
scription in GL from the cpeCDE and cpeBA operons
in a rcaE null mutant, suggesting that a photoreceptor
in addition to RcaE may play a role in modulating
expression of genes encoding PBS polypeptides with
respect to light quality (Seib and Kehoe 2002). The
identification of regulatory elements and how they in-
teract to yield a PBS structure that is tailored to light
conditions is still a very fertile field of investigation.

Concluding remarks

While I have focused this essay on the role that
light quality plays in the biosynthesis of PBS, both
light intensity and nutrient levels also regulate PBS
biosynthesis, as well as the biosynthesis of other pho-
tosynthetic complexes (Fujita et al. 1994; Grossman et
al. 2001). Furthermore, there appear to be regulatory
elements that integrate the effects of light and nutrient
availability (especially nutrient limitation) on photo-
synthetic activity, possibly by the generation of re-
dox signals (Fujita et al. 1987; Escoubas et al. 1995;
Durnford and Falkowski 1997; Alfonso et al. 1999;
Li and Sherman 2000; van Waasbergen et al. 2002)
that enable cell survival during adverse environmental
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Figure 6. Arthur Grossman (author) during a recent visit (July
2002) to the hot springs of Yellowstone National Park.

conditions (Schwarz and Grossman 1998; van Waas-
bergen et al. 2002). I have enjoyed analyzing the re-
sponses of photosynthetic microbes to harsh environ-
ments and recently visited hot springs in Yellowstone
National Park (as seen in Figure 6) to puzzle over the
resilience of the photosynthetic apparatus under near
boiling conditions. I believe that as our understanding
of the dynamic control of photosynthetic function and
flexibility increase, we will be able to explore possib-
ilities for using molecular technologies to engineer the
photosynthetic apparatus for better performance un-
der specific environmental conditions, which can have
significant social and economic impacts.
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