Wrapup 2008-07-09 1 of 3

Possible Plasmids:
pLV-TRE-Ngn1-EYFP-2A-mKate-Ubc-Bla:
A6 Midiprepped, PCR purified, sequence tonight; $68 \mathrm{ng} / \mathrm{ul}$
B4 Midiprepped, PCR purified, sequence tonight; $45 \mathrm{ng} / \mathrm{ul}$
A22 Grow for midiprep: Ngn1 sequencing successful! ;
A23 Midiprepped, PCR purify tomorrow; $62 \mathrm{ng} / \mathrm{ul}$
A25 (sequenced) Excess DNA????
B14
B18

Priority

General

Debugging

Plasmids

pLV-TRE-Ngn1-EYFP-2A-mKate-Ubc-Bla
[3] Minipreps - 25 from each plate (50 total)
[2] O.D. $-4-108 \mathrm{ng} / \mathrm{ul}$; mostly 20-60ng/ul
[2] Finish Restriction digests with AscI and BsmBI
[2] Run restriction digest on gel for last 18. Restricted with Bsu36I; expect bands at ~ 3000 and $\sim 9000 \mathrm{bp}$.
[1] Sequence new Ngn1 - Designed and ordered
[1] Sequence insert - A22, A25, [David is taking it down tonight]
[3] Midiprep (with smaller elution volume) A6 (54ng/ul), B4 (17ng/ul)
[2] PCR purify maximum volume of A6 ($68 \mathrm{ng} / \mathrm{ul}$), B4 ($45 \mathrm{ng} / \mathrm{ul}$) that fits into a single tube [100 or 120ul?], elute with 40ul
[2] PCR purify the DNA with higher OD (A23)
Molly and Eric will find a good concentrator to use and will be very kind to the head of said lab so that we can use it the rest of the summer.
[1] Sequence A6, B4, rtTA [Andrew]
[1] A22 sequence of Ngn1 successful by BLAST; ALIGNX verification in Vector NTI
[3] Maxiprep A22
[1] Sequence A22 Maxiprep properly
[1] Design/order correct sequencing primer (instead of UBC forward, order a reverse primer)
[3] Grow and midiprep A23 (Transform, Grow, Midiprep)
[3] Midiprep B14, B18 - transform
[2] Restriction digest A6, B4 with Bsu36I (the ones that looked promising but hadn't been digested with Bsu36I yet)

Wrapup 2008-07-09 ${ }_{2}$ of 3

[1] Find a single-cut enzyme - PacI
[1] Digest
[1] restriction map
Bad sequencing results.
[2] PCR purify 20ug or 120 ul , whichever is larger
[1] Design new sequencing primers
[1] Sequence the PCR purified DNA
pFUGW
[3] Make more pFUGW - transformed
[3] Maxiprep - O.D. $=250 \mathrm{ng} / \mathrm{ul}$
p148
[3] O.D. [$\sim 500 \mathrm{ng} / \mathrm{uL}]$
[3] Maxiprep [1330-1360 ng/ul] (Two O.D. tries)
pLV-TRE-PKMz-Ubc-Hyg
[Cil] Request gene from lab X
[1] Design plasmid
[1] Buy PKMz
pLV-pPKMz-EGFP-Ubc-Bla
[Cil and Team \#1] PCR PKMz gene and promoter out of chromosome
[1] Design Plasmid
[1] Buy the promoter (PKMz)
pLV-Hef1a-LacO-Mash1-Cerulean-Ubc-Hyg
[1] Show design to Cil
[1] Order primers
[1] PCR SOEing to make the plasmid - add Ubc-Hyg to PCR SOEing
Design SOEing primers for Mash1-Cerulean-Ubc-Hyg
[1] The backbone's going to be Hefla/LacO
pLV-TRE-Ngn1-EYFP-Ubc-Bla
[1] Gradient PCR EYFP by itself from the original plasmid [Eric and Caroline Jr.]
[1] Run gel
[3] Transform and midiprep pEYFP
[1] Design digest (50-250 bp on either side of EYFP) and digest pEYFP with (5') HindIII [37C] or BsaXI and (3') SpeI or BsmBI [55C]
Verify result of enzyme check.
[1] PCR EYFP
[1] PCR Ngn1
[1] SOE Ngn1-EYFP.
[1] Run gel
[1] Extract

Wrapup 2008-07-09 of $_{3}$

??

Vector NTI Stuff

What we have in the database / load database
Look over primer design for Ngn1-EYFP
Put primer design manual in public folder
Design PCR SOEing primers for pLV-Hef1a-LacO-Mash1-Cerulean-Ubc-Hyg

Lentivirus

Lenti: pLV-TRE-Ngn1-EYFP-2A-mKate-Ubc-Bla

Experiments

Experiment: Ngn1-EYFP-2A-mKate
Infect cells
Add Dox
Observe differentiation
Make Yellow/Red artificial brains
Plan ahead: Camera sensitivity, Dyes, Cil found a dye which could help us see action potentials.
Buy some neurons, Dyes, potassium and valinomycin, glutamate, GABA, dopamine, ACh, special media
Start planning microfluidics and also the optical twizzlers
Bio nanoforce

