Title of Experiment

The experiment could be classified into 2 phases

Characterization of pLacI-GFP

- 1. Preparation
- 2. Measurement

Personnel

Chin Chong, Zhen Fu

Materials

Phase I:

IPTG

Lactose

50ml Tubes

LB broth (Amp)

M9 medium with 0.4% glycerol (Amp)

1.5 ml Eppendorf Tubes

Bottle of Distilled water

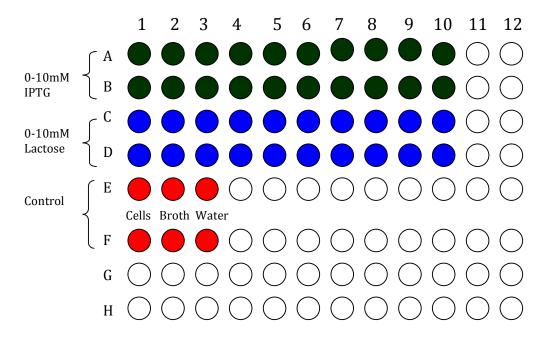
Phase II:

Absorbance Reader

FLx800™ Fluorescence Microplate Reader

96 well

Protocols/Procedures


Phase I:

- 1. Inoculate colonies of interest in 5ml of LB broth with antibiotic resistance (e.g. Amp) for 16 hours in a 37 °C incubator to shake at 235 rpm.
- 2. From the 100mM stock of Lactose and IPTG prepared and stored in -20°C, the varying concentration of lactose/IPTG were prepared as per table 1 below, from 0 to 10mM range. DO NOT add the cells yet.
- 3. The labeled 1.5 ml eppendorf tubes were filled with the contents of 1) IPTG/lactose and 2) distilled water as indicated by step 5 for 0 to 10mM range Prepare two samples for each concentration so that an average reading can be measured.

Table 1: 0 to 10mM IPTG/Lactose range

Into Eppendorf tube

	IPTG/Lactose concentration	Amt IPTG/Lactose added (3 samples)	Amt of distil water	lled	Amt of cells added	Total Amt of contents
1	10mM	25uL (75)	25uL (75)	200 uL	250uL
2	9	22.5 (67.5)	27.5 (82.5)	200	250
3	8	20 (60)	30 ((90)	200	250
4	7	17.5 (52.5)	32.5 (97.5)	200	250
5	6	15 (45)	35 (105)	200	250
6	5	12.5 (37.5)	37.5 (112.5)	200	250
7	4	10 (30)	40 (1	120)	200	250
8	3	7.5 (22.5)	42.5 (127.5)	200	250
9	2	5 (15)	45 ([135]	200	250
10	1	2.5 (7.5)	47.5 (142.5)	200	250
11	0 (Control 1) Cells only	0	50 ([150]	200	250
12	0 (Control 2) LB Broth only	0	50 ([150]	200 of LB broth	250
13	0 (Control 3) Water only	0	250 (750)	0	250 of water
	Total	162.5uL (412.5)			2200uL	

Phase II:

- Set the program on the PC that is connected to the FLx800™ Fluorescence Microplate Reader.
 Create a protocol before hand, setting the time interval 600s of measurement for 12 hours,
 excitation wavelength 485 nm and emission wavelength 525 nm.
- Zero the Absorbance machine with 1ml of LB broth in a cuvette at wavelength 600 nm, the LB broth must belong to the same batch that was used to grow/inoculate the cells containing LacI-GFP. The cuvette was covered with parafilm tape to prevent contamination
- 3. Measure the optical density (OD) using a sample of 1ml of cells that was growing to the desired **1.2 OD**, by pippetting it into a cuvette.
- 4. After overnight growing in phase one, the cells needs to be diluted and re-grew to OD 1.2
- 5. Diluted cell cultures were prepared in the following mix of 2ml cells: 4ml of fresh LB broth.
- 6. Measure OD of a 1ml sample immediately. Incubate the remaining 5ml sample at 37 °C with shaking at 235rpm for ~15mins.
- 7. Measure OD after incubation. Repeat steps 5 & 6 till 1.15 < OD <1.25, with the necessary adjustments. Note down final volume.
- 8. Centrifuge at 4000rpm for 10 mins at 25 °C. Decant supernatant and re-suspend cell pellet in the appropriate M9 medium (kanamycin / ampicilin resistance). Volume of M9 used should correspond to that noted in Step 7.
- 9. Incubate at 37 °C with shaking at 235rpm for 10mins.
- 10. Measure OD of sample and adjust such that 1.15 < OD < 1.25.
- 11. When the 1.2 (± 0.05) cell density was reached, pipette 200 uL of cells with M9 medium into the wells that was to be used.
- 12. Induce the GFP production in the fume hood by introducing all the wells with the varying IPTG/lactose and distilled water that was prepared earlier in phase 1.

- 13. Place the loaded well with the cover into the FLx800TM Fluorescence Microplate Reader.
- 14. Use the preset protocol and allow the machine to heat up the well to i) 25°C ii) 37°C iii) 42°C
- 15. Allow the machine to measure the fluorescence readings for a time period of **12 hrs** at 10 mins intervals.
- 16. Extract the data and plot a graph of fluorescence versus time for each concentration.
- 17. Combine the graphs and plot all the different fluorescence versus time plots for all concentration. A 3-D graph would be obtained.
- 18. To discuss the effect of varying the concentration of the IPTG/lactose on placI-GFP by relating the induction of IPTG/lactose with the lacI promoter activity.