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A walk-through of the yeast mating pheromone response pathway
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Abstract

The intracellular signal transduction pathway by which the yeastSaccharomyces cerevisiaeresponds to the presence of peptide mating
pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and
insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled
G protein, via a MAP kinase cascade, to the nucleus.
© 2004 Elsevier Inc. All rights reserved.
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. Introduction

The components of intracellular signaling pathways are
ynamically interconnected in a complex network, where

he proteins correspond to the nodes of the network and the
rotein–protein and enzyme–substrate interactions are the

inks between them. An integrated molecular and systems-
evel understanding of such networks will require a ‘parts
ist’ of the nodes, a wiring diagram of the links between them,
nd experimental understanding of the effects of perturbing

ndividual nodes and links[54,77].
The intracellular signal transduction pathway by which

he yeastSaccharomyces cerevisiaeresponds to the presence
f peptide mating pheromone in its surroundings is one of the
est understood signaling pathways in eukaryotes; much has
een learned from the application of classical and molecu-

ar genetics, biochemistry and cell biology. For this pathway,
t can be argued that the list of crucial parts is essentially
omplete, and that the order in which those parts function,
articularly with regard to the transmission of the initial sig-
al from outside the cell to the nucleus, is pretty well un-

and enzyme–substrate interactions that connect the pa
each other. The broad challenge for the future, then,
achieve a detailed understanding of the function of the
dividual links, and then to synthesize this knowledge in
systems-level understanding of the pathway and the l
network in which it is embedded.

The objectives of this review are to provide a succ
overview of signal transmission through the pathway,
emphasis on recent findings. The focus will be on
pheromone response pathway per se, and not on the fas
ing issues concerning how this pathway is integrated w
and insulated from, other pathways within the cell that
similar, or even identical, components. Parallels with m
complex eukaryotic cells (mammalian cells in particular)
be highlighted. As this is not intended to be a compre
sive review, I will not attempt to cite a primary referen
source for each fact I mention. This information is availa
in the many excellent reviews of aspects of this pathway
have been published over the last decade[9,32,33,37,56,60
85,115].
erstood. Furthermore, there is an extensive, though by no
eans complete, catalog of the links—the protein–protein
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2. Overview of the mating process

Saccharomyces cerevisiae(yeast hereafter) is known as
b bud-
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ding yeast for its mode of cell division. The study of the yeast
pheromone response pathway began with the isolation of ster-
ile mutants in the laboratories of Mackay and Hartwell in the
seventies[59,94,136]. The sterile, orSTE, mutants were un-
able to mate, and those specifically defective in pheromone
response did not undergo cell-cycle arrest or change their
shape when exposed to purified mating pheromone. Most
of the genes in the pathway were cloned in the 1980s and
1990s. Characterization of the gene products continues to
the present day, with more recent studies emphasizing func-
tional genomics, aspects of signaling specificity, and detailed
characterization of the function of particular protein–protein
interactions.

Yeast have two mating types,a and ( (genotypesMATa
andMAT�, respectively).MATaandMAT� cells are haploid,
and the result of a successful mating will be that two haploid
cells of opposite mating type fuse to form aMATa/MAT�
diploid.MAT� cells secrete (-Factor pheromone, a 13 residue
peptide (sequence WHWLQLKPGQPMY), and respond to
a-Factor.MATa cells secretea-Factor, a 12 residue pep-
tide (sequence YIIKGVFWDPAC) that is covalently at-
tached to a lipid (farnesyl) group, and respond to (-Factor.
When a yeast cell is stimulated by pheromone secreted by
a nearby cell of the opposite mating type, it undergoes
a series of physiological changes in preparation for mat-
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3. A walk-through of the mating pathway

3.1. The G-protein-coupled pheromone receptor

Mating is initiated by the binding of the mating
pheromone to a seven-transmembrane, G-protein-coupled re-
ceptor (GPCR) on the cell-surface. Receptor-level events are
reviewed in much greater detail elsewhere in this issue by
Naider and Becker (this issue of Peptides). As is true for vir-
tually all other GPCR/G-protein modules in eukaryotes, re-
ceptor occupancy stimulates the G( subunit of the G protein to
exchange GDP for GTP; GTP-bound G( then releases the G((
heterodimer (see[32] for a recent review of G-protein level
events). G( may also have additional roles in mating besides
just regulating G(( release[55,102]. Furthermore, G( may not
truly release G(� [78]; instead, G( may remain loosely bound
to (and in regulatory communication with) G(( and perhaps
the receptor as well. The flow of information then proceeds
from G(( via a four-tiered protein kinase cascade to nuclear
transcription factors and other targets. The major components
of the pathway and their functions are summarized inTable 1,
and a subset of these are depicted inFigs. 1 and 2. Table 2
provides additional information about them, including their
closest human homologs.Table 3explains where some of the
names came from.
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ng. These include significant changes in the expressio
bout 200 genes (about 3% of the genome), arrest i
1 phase of the cell-cycle, oriented growth toward the

ng partner, and, ultimately, the fusion of the plasma m
ranes of the mating partners, followed shortly there
y the fusion of their nuclei. The entire process takes a
h.
Many of the same changes also occur when

f one mating type are exposed to pheromone pur
rom the opposite mating type. (Sincea-Factor is hard
o purify, troublesome to synthesize, and sticks to m
urfaces, typicallyMATa cells are treated with synth
ized (-Factor peptide.) Cells so treated will arrest t
ell-cycle, induce or repress most of the same ge
nd even elongate in a default direction determined

he site of their previous bud. These changes ca
iewed as the differentiation of vegetatively growing c

nto cells with the characteristics of gametes. Cells
ot irreversibly committed to this differentiation proce
owever. Cells that do not successfully mate eventu
eenter the cell-cycle and continue vegetative growt
aploids.

The signal transduction pathway that senses the pre
f extracellular pheromone and orchestrates the su
ellular responses to it is known as the yeast ma
heromone response pathway, or mating pathway for s
everal of the components of the mating pathway are
omponents of distinct signaling pathways that regu
spects of filamentous invasive growth and the respon
ertain stresses[91,114,123]. This is not covered here, b
as been recently reviewed[18,108,116,142].
.2. G-protein effectors

Following release from G(, the membrane-bound G(( c
lex transmits the signal by binding to three different ef

ors: (1) a Ste5/Ste11 complex; (2) the Ste20 protein kin
nd; (3) a Far1/Cdc24 complex. It is Ste4Gβ that actually
inds to each of the effectors, using interaction surfaces
ere buried or obscured when it was associated with�-

able 1
ome key components of the yeast mating pheromone response pat

rotein Function

te2/3 7-transmembrane-segment, G-protein coupled phero
receptors

pa1 G-protein� subunit
te4, Ste18 G-protein (( subunits
te5 Adapter and scaffold, binds G(, MAPK cascade kinases

others
em1 Involved in polarity establishment, binds Ste5, Cdc42, C

and Ste20
dc24 Guanine nucleotide exchange factor (GEF) for Cdc42
dc42 Small rho-like G-protein, binds to Ste20, Bem1, and oth
te20 PAK (p21-activated protein kinase), activated by Cdc42
te11 MEKK (MEK kinase), activated by Ste20
te50 Binds to N-terminus of Ste11 and aids and/or helps ma

in its activation
te7 MEK (MAPK/ERK kinase), activated by Ste11
ss1, Fus3 MAP kinases, activated by Ste7
ig1, Dig2 MAPK substrates, repressors of Ste12 transcriptional ac
te12 MAPK substrate, DNA-binding transcriptional transactiv
ar1 MAPK substrate, inhibits cell-cycle progression,

adapter/scaffold that binds G(, Cdc24 and others



L. Bardwell / Peptides 25 (2004) 1465–1476 1467

Fig. 1. Schematic cartoon of selected elements of the yeast mating
pheromone response pathway (see text for details).

GDP; Ste18G� anchors the (( complex to the membrane via
covalently attached lipid (farnesyl and palmitoyl) groups. A
key result of G(( binding to these multiple effectors is that
Ste20 and Ste11 are brought near each other; the initial signal
is then transmitted further downstream when Ste20 phospho-
rylates, and thereby activates, Ste11, the first domino in the
MAP kinase cascade.

The first G(( effector is Ste20. A short conserved motif
in the carboxy-terminus of Ste20 binds to G(([81,84]. Ste20
is the founding member of the p21-activated protein kinase
(PAK) family [90]. Unactivated, cytoplasmic Ste20PAK is in

F mone
r

a low-activity state, because the CRIB domain in its large
N-terminal region sterically occludes the active site of the
C-terminal kinase domain[80]. In mammalian PAK1, this
autoinhibition occurs in trans, in the context of a homodimer
[111]. Activation of Ste20 occurs when the CRIB domain
binds to a small (21 kD), Rho-like G protein, Cdc42[3,69];
this interaction antagonizes the ability of Ste20’s CRIB do-
main to inhibit its kinase domain, thereby permitting au-
tophosphorylation of its now-exposed activation loop[99].
Cdc42, like Ste18G(, is permanently tacked to the inner leaflet
of the plasma membrane by virtue of a covalently attached
lipid (geranylgeranyl) moiety. Hence, another role of Cdc42-
Ste20 binding is to localize Ste20 at the membrane. This may
also be facilitated by the association of Ste20 with Bem1,
which also binds to Cdc42, as well as to two other proteins
that are recruited to the membrane in pheromone stimulated
cells: Ste5 and Cdc24 (see below)[83,92,103].

The second G(( effector is Ste5. An N-terminal region of
Ste5, containing a RING-H2 domain, binds to G(( near the
Ste20 binding site[35,47,66,149]. Ste5 is a large, multifunc-
tional protein that has no catalytic activity, but serves as a
binding platform, tugboat, and scaffold for several other pro-
teins. Ste5’s first function is to serve as an adapter, binding
to both G( and to the Ste11 protein kinase, and thus towing
bound Ste11 to the vicinity of the plasma membrane follow-
i o
i 42,
G te11.

c24
p l
h r1
b nge
f htly
t r for
S apter
f nal-
o ki-
n d to
S ty of
t local-
i
b 4’s
s s on
C TP-
b
a olved
i ton
[

no
c cell
w lian
fi ing,
y rec-
t med
a hape
t or-
ig. 2. Wiring diagram of selected elements of the yeast mating phero
esponse pathway (see text for details).
ng pheromone stimulation[117]. Here, Ste20 (which is als
n the neighborhood by virtue of its association with Cdc
(( and Bem1) phosphorylates, and thereby activates, S
The third G(( effector is a complex of the Far1 and Cd

roteins[21,105]. A RING-H2 domain in the N-termina
alf of Far1 binds to G((; while the C-terminal half of Fa
inds to Cdc24[21]. Cdc24 is a guanine nucleotide excha

actor (GEF) for Cdc42. Cdc24GEF is complexed tig
o Far1. Similar to how Ste5 functions as an adapte
te11 activation (see above), Far1 functions as an ad

or Cdc42 activation. Far1’s adapter function is most a
gous to the way Grb2 functions in receptor tyrosine
ase signaling pathways: by binding to the receptor an
os, Grb2 brings the Sos exchange factor to the vicini

he plasma membrane, where Sos’s substrate, Ras, is
zed. Analogously, by binding to G( and to Cdc24GEF, Far1
rings Cdc24GEF to the plasma membrane, where Cdc2
ubstrate, Cdc42, is (literally) hanging. Cdc24 then act
dc42 to promote the exchange of GDP for GTP. G
ound Cdc42 binds to several effectors, including Ste20PAK,
s detailed above, as well as several other effectors inv

n the regulation of cell polarity and the actin cytoskele
36,69].

Yeast cells are non motile. They cannot swim, having
ilia or flagella, nor can they crawl; they have a rigid
all, and cannot form filopodia like amoeba or mamma
broblasts[76]. Rather, although they have ceased divid
east cells elongate by growing asymmetrically in the di
ion of the nearby mating partner, forming a structure ter
mating projection, and adopting a distended pear-like s

hat is termed a ‘shmoo’[95]. As this shape change, or m



1468 L. Bardwell / Peptides 25 (2004) 1465–1476

Table 2
Size, mass and human homologs of the key players

Name Length (aa) Mass (kDa) Domains/motifsa Closest human homologb

Locus Name Identities E Valuec Reciprocald

Ste2 431 48 7TM (weak) – – – – –
Ste3 470 54 7TM (weak) – – – – –
Gpa1 472 54 G( GNAI2 Gi alpha 2 177/385 (46%) 1e-67 No
Ste4 423 47 WD40 GNB4 G beta 4 144/386 (37%) 8e-67 Yes
Ste18 110 13 G( (weak) – – – – –
Bem1 551 62 SH3 x2, PX, PB1 SORBS1 Ponsin 58/232 (25%) 4e-09 Yes
Cdc24 854 97 CH, RhoGEF, PH, PB1 VAV3 Vav3 100/461 (21%) 6e-20 Yes
Cdc42 191 21 Rho CDC42 Cdc42 153/191 (80%) 2e-88 Yes
Ste5 917 103 RING-H2 – – – – –
Ste50 346 39 SAM, RA – – – – –
Ste20 939 102 PBD/CRIB, Kinase PAK1 PAK1 257/553 (46%) 1e-123 Yes
Ste11 717 81 SAM, Kinase MAP3K3 MEKK3 128/310 (41%) 9e-57 Yes
Ste7 515 58 Kinase MAP2K1 MEK1 135/397 (34%) 5e-56 No
Fus3 353 41 Kinase MAPK1 ERK2 177/346 (51%) 2e-96 Yes
Kss1 368 43 Kinase MAPK1 ERK2 182/362 (50%) 7e-96 No
Dig1 452 49 – – – – – –
Dig2 323 37 – – – – – –
Ste12 688 78 Homeo (weak) – – – – –
Far1 830 94 RING-H2 – – – – –
Bar1 587 64 Asp-like protease PGC Pepsinogen C 99/369 (26%) 8e-26 No
Sst2 698 80 DEP, RGS – – – – –
Msg5 489 54 Phosphatase DUSP10 MKP5 44/137 (32%) 5e-13 Yes
Ptp2 750 86 Phosphatase PTPRC CD45 102/378 (26%) 5e-21 No
Ptp3 928 105 Phosphatase PTPN6 SHP-1 86/346 (24%) 2e-16 No

a Refers to conserved domains or motifs found in animal cells. Note that although Ste2 and Ste3 are clearly seven-transmembrane (7TM), G-protein-coupled
receptors, their conservation with functionally-related human receptors is too weak to detect, except with algorithms such as PSI-BLAST[71]. The same is
true of Ste18 and human G(’s.

b As determined by BLASTing the yeast sequence against the human genome.
c ‘–’ = E value > 1e-5.
d Reciprocal means that the closest yeast homolog to the human protein is the one in column 1.

phogenesis, is in a particular direction, it is polarized, and
as the direction chosen is towards the highest concentration
of pheromone, it is chemotropic. The G(-Far1-Cdc24-Cdc42
branch of the pathway is crucial for the chemotropic polar-
ized morphogenesis that occurs during mating[21,37,105-
107,130,140], as are Cdc42 targets such as Bem1, Bni1, Gic1
and Gic2[20,24,43]. Cells that crawl use similar regulatory
strategies[23]; for example, G((-dependent recruitment of a
PAK and a Cdc42 exchange factor also occurs in mammalian
chemotaxis[89,101].

Table 3
What some of the names mean

Name Meaning Why? (phenotype)

Ste Sterile Null mutants cannot mate
Gpa1 G-protein alpha subunit Named after function
Cdc Cell division control Cell-cycle arrest at restrictive temperature
Fus Fusion Null mutants defective for cell fusion during mating
Bem Bud emergence Budding defect
Far Factor arrest Null mutants defective for pheromone-imposed cell-cycle arrest
Sst Supersensitive Null mutants are supersensitive to pheromone
Bar Barrier (to (-factor diffusion) Null mutants are supersensitive to (-factor pheromone
Kss1 Kinase-suppressor of Sst2 Multicopy suppressor ofsst2mutant; overproduction of Kss1 inhibits pheromone signaling
Dig Down-regulator of invasive growth Null mutants exhibit constitutive invasion and derepression of Ste12-regulated genes
Ptp Protein tyrosine phosphatase Named after function
Msg5 Multicopy suppressor ofGPA1deletion Overproduction of Mgs5 (a dual-specificity MAPK phosphatase) inhibits pheromone signaling

Proteins involved in signaling, polarization, cell adhesion,
and fusion are localized to the mating projection. As in mam-
malian cells, this polarized protein localization involves the
actin cytoskeleton, cholesterol and sphingolipid-rich lipid
rafts, localized exocytosis, and rapid endocytosis to prevent
diffusion to equilibrium[4,5,139].

Although the interaction of G(( with the Far1/Cdc24
complex is required for pheromone-induced changes in
cell polarity, it is not required for initial signal transmis-
sion, as shown by the fact that Far1 itself is dispensable
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for this process[22]. There appears to be enough active
Cdc24GEF and Cdc42 constitutively at the membrane to ac-
tivate the amount of Ste20PAK required for initial signaling
[80,117].

3.3. The MAP kinase cascade-overview

Mitogen activated protein kinase (MAPK) cascades are
found in all eukaryotes, and are expressed in virtually all
tissues. MAPK cascades contribute to the regulation of
diverse responses, including, in both yeast and humans,
hormone action, cell differentiation, cell-cycle progression,
and stress responses[50,88]. The MAPK cascade is a set of
three sequentially acting protein kinases. Starting from the
bottom and working back up, there is a MAPK (also termed
extracellular-signal-regulated kinase, or ERK), which is
phosphorylated and thereby activated by a MAPK/ERK
kinase (MEK, or MAPKK, or MKK). MEK activity is
regulated, in turn, via phosphorylation by the topmost
member of the module, a MEK kinase (MEKK). In the yeast
mating pathway, the MEKK is Ste11, the MEK is Ste7, and
there are two MAPKs, Kss1 and Fus3.

The following is a summary of signal transmission through
the MAPK cascade: As a result of Ste5-dependent recruit-
ment to the membrane, the N-terminal regulatory domain
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3.4. Ste11MEKK

Ste11 consists of an N-terminal regulatory region (com-
prising roughly half of the protein) and a C-terminal kinase
domain. Within the N-terminal regulatory region, three do-
mains have been recognized. First, there is a SAM domain,
which binds to the Ste50 protein, followed by a domain that
mediates Ste5 binding[67,150], and then a short domain (the
catalytic-binding domain, or CBD) that binds to and inhibits
the C-terminal catalytic domain[13,137,141]. The CBD is the
site of a point mutation (P279S,STE11-1allele) that consti-
tutively activates Ste11 by weakening the ability of the CBD
to bind to and inhibit the kinase domain[133]. The CBD
also contains serine and threonine residues that are phospho-
rylated by Ste20. Ste20-mediated phosphorylation of these
residues also antagonizes the ability of the CBD to inhibit
the kinase domain, thereby activating Ste11[141].

Ste50 binds constitutively to the SAM domain of Ste11 via
a SAM domain of its own[67,150]. Cells lacking Ste50 are
not truly sterile, but are compromised for signaling and mate
with a roughly 10–100-fold reduced efficiency, depending
upon the strain background. The binding of Ste50 to Ste11
weakens the interaction of the N-terminus of Ste11 with its
C-terminus[150]. In so doing, Ste50 may help make the CBD
more accessible to Ste20-mediated phosphorylation, or assist
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f Ste11 is phosphorylated by Ste20 . Ste50 is als
ound to Ste11, and aids in its activation. Ste11 then
ates Ste7MEK by phosphorylating its activation loop, a
te7MEK, in turn, activates Fus3MAPK and Kss1MAPK, by
hosphorylating their activation loops. Distinct regions
te5 also bind to Ste7MEK and to the MAPKs. Here, Ste

s thought to function as a scaffold, co-localizing, seq
ering and organizing the component protein kinases o
ating MAPK cascade, thus enhancing signal trans

ion from MEKK to MEK to MAPK [19,38,49,57,110,11
28,146].

Two very common themes in the regulation of pro
inase activity are: (1) inhibition of the kinase domain
n autoinhibitory domain[132] and (2) regulation of the k
ase by phosphorylation of the activation loop, a regio

he catalytic domain located between conserved kinase
omains VII and VIII in the primary structure, just belo

he catalytic cleft in the tertiary structure[1]. Phosphoryla
ion of the activation loop induces it to refold, causing s
le conformational changes, which reverberate through
est of the enzyme and increase its catalytic rate by
us mechanisms[87]. For example, in MAP kinases, activ

ion loop phosphorylation unblocks the active site and
otes a closure of the upper and lower lobes of the ki
omain that brings the catalytic residues into their cor
rientation[70]. Ste20PAK (see above) and Ste11MEKK (see
elow) are regulated by autoinhibitory domains. In addit
te20 (and perhaps Ste11) are also regulated by activ

oop phosphorylation. For Ste7MEK and the MAP kinase
ctivation loop phosphorylation is the primary means
egulation.
n holding phosphorylated Ste11 in a fully open and ac
onformation, or both.

Ste5 binds to an imprecisely-defined region of Ste11 a
70 residues long that is sandwiched between the SAM
ain and the CBD[67]. Ste5-Ste11 binding appears to se
t least three purposes. First, as discussed above, Ste5
s an adapter, towing Ste11 to the membrane and near to

ivator, Ste20PAK. Second, Ste5, by binding to the N-termin
f Ste11, may, like Ste50, help make the CBD more acc
le to Ste20-mediated phosphorylation, and/or assist in

ng phosphorylated Ste11 ‘open’. Third, Ste5 also bind
te7MEK, and thus may facilitate signal transmission fr
te11MEKK to Ste7MEK.
It is notable that Ste11MEKK has not been reported to bi

ith measurable affinity to its upstream activator, Ste20PAK,
or to its downstream target, Ste7MEK. Both the Ste20–Ste1
nd Ste11–Ste7 interactions, thus, appear to resemble
ical, transient enzyme–substrate interactions. As de
bove, however, several other proteins conspire to bring S
nd Ste20 to the same region of the membrane, and pe

o hold them together in a stable multiprotein complex
ddition, Ste5 functions to bring Ste11 and Ste7 togethe

There is some confusion in the literature as to whe
te11 is 717 or 738 residues long. This is because the lo
ontiguous ORF is 738 residues long, having an extr
-terminal residues. When the transcription start site
apped by Errede’s lab, however, it was found to be do

tream of the first ATG; therefore, translation must sta
he second ATG, leading to a 717 residue product[120]. This
onclusion is supported by comparison of Ste11 seque
n closely related yeasts[72].
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3.5. Ste7MEK and MAPK phosphorylation

Activated Ste11 phosphorylates target residues in the
activation loop of Ste7MEK [104,156]. As a result, Ste7 is ac-
tivated. Activated Ste7 then phosphorylates, and thereby ac-
tivates, its targets, the MAPKs Kss1 and Fus3 on a threonine
and a tyrosine residue in their activation loop[8,41,53,93].

Although Ste7MEK cannot bind stably to Ste11MEKK with-
out help, Ste7 binds directly and with quite high-affinity to
its substrates, Kss1MAPK and Fus3MAPK [8]. Ste7-MAPK
complexes have a Kd∼5–100 nM, depending on the assay,
and a half-life of∼2 min at 30◦C; this is a higher affin-
ity and stability than would be expected for a prototypi-
cal enzyme–substrate interaction. Indeed, complex forma-
tion does not require the kinase domain of Ste7. Like many
other MEKs, Ste7 consists of a highly conserved catalytic do-
main and a N-terminal extension that exhibits substantially
less conservation. It is the first 20 residues of this N-terminal
extension that contain the MAPK-binding site, or docking
site[7,8]. Similar MAPK-docking sites, or D-sites (consen-
sus sequence (K/R)2-3-X1-6-L/I-X-L/I), are present in the N-
terminal extensions of MEKs in organisms representative of
many different phyla and even across kingdoms[7,12]. In-
deed, the D-sites in mammalian MEK1[7,151], MEK2 [7],
MKK3 and MKK6 [39], and MKK4 [63] have been shown
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scaffold, may serve much the same purpose. What is this pur-
pose? One possibility is that these stable protein interactions
may hold the enzymes together long enough for a relatively
slow catalytic phosphotransfer reaction to occur efficiently.
Another suggestion is that docking and scaffolding function
by making the dual phosphorylation of MAPKs by MEKs
processive rather than distributive[19,86]. However, this no-
tion may be inconsistent with evidence that dual phospho-
rylation cannot occur without prior dissociation of the high-
affinity Ste7-MAPK complex, suggesting non-processivity
[8]. Regardless of the precise mechanism, it appears that
some of the protein–protein interactions in which the MAPKs
participate make overlapping, mutually reinforcing contribu-
tions to MAPK activation, so that a dramatic phenotype is
only observed when multiple links are severed simultane-
ously.

3.6. MAPK targets

MAPKs, like their cousins, the cyclin-dependent kinases,
are proline-directed kinases: they phosphorylate their targets
on serine or threonine residues that are immediately followed
by a proline. Key substrates of Fus3MAPK and Kss1MAPK

are the Ste12/Dig1/Dig2 transcription factor complex and the
Far1 protein.
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ause the cellular concentration of the mammalian kin
re higher[48].

It is now widely appreciated that the D-site motif fi
iscovered in Ste7 is found not only in MEKs, but also

ranscription factors, phosphatases, scaffolds, other kin
nd other proteins, where it mediates MAPK binding to th
ubstrates and regulators[40,129]. In the yeast mating pat
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ultiple binding partners, contributing to both signal tra
ission and specificity. Furthermore, the dynamics and s

city of MAPK-mediated signaling is likely to be influenc
y the competition between multiple MAPK substrates
egulators for MAPK-docking[6,63].

Mutants of Ste7 in which the D-site has been altere
eleted exhibit substantially reduced MAPK binding. W
uch mutants are introduced into yeast cells in place of
ype Ste7, however, only a modest defect in pheromon
ponse is observed. This modest defect can be drama
nhanced, however, by mutations in the Ste5 scaffold
ompromise the ability of Ste5 to bind to Ste7[7]. This ob-
ervation suggests that scaffolding and docking might
imilar, mutually reinforcing roles in achieving efficient s
al transmission. In other words, the direct binding of ME
APK, and the binding of both MEK and MAPK to the St
,

Ste12/Dig1/Dig2:The stimulation of haploid yeast ce
ith mating pheromone results in the transcriptional ind

ion of at about 200 genes, of which about 100 are induce
t least two-fold[122]. Strains lacking the Ste12 transcr

ion factor are completely defective for these pherom
nduced changes in gene expression[122]. Ste12 is a DNA
inding transcriptional transactivator. Ste12 binds to a D
otif in the promoters of the genes it regulates, conse

A/T)GAAACA [58], which is designated the pheromo
esponse element (PRE). Ste12 can also bind combin
lly to composite DNA elements in combination with ot

ranscription factors such as Mcm1[100] and Tec1[14,96].
The Dig1 and Dig2 proteins bind to and repress S

29,135]. In strains lacking Dig1 and Dig2, pheromon
nduced genes are constitutively upregulated[10,122,135].
ig1 and Dig2 display some sequence similarity to each o
ver a limited region, but appear to repress Ste12 by d
nt mechanisms. Dig2 binds to the DNA-binding domai
te12, whereas Dig1 binds to a different region[109].
Fus3MAPK and Kss1MAPK are thought to regula

heromone-induced gene expression by directly phos
ylating the transcription factors Ste12, Dig1 and D
us3 and/or Kss1 must be catalytically active in order
heromone-induced changes in gene expression to

53]. Furthermore, Ste12[17,65], as well as Dig1 and Dig
29,135], are substrates of Fus3 and Kss1. Finally, Dig1
ig2 appear to bind Ste12 less tightly following pherom
timulation [29,135]. These data collectively suggest t
APK-dependent phosphorylation of Ste12 and/or Dig
lters the ability of Dig1/2 to bind to and repress Ste12. H
ver, it is not known which particular phosphorylation eve
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are crucial, as the target residues have yet to be mapped or
mutated.

Ste12-dependent, pheromone-induced genes include
positively-acting components of the mating pathway (STE2,
FUS3, FAR1), negative feedback regulators of the pathway
(SST2, MSG5, GPA1), and genes involved in the process of
cell fusion (e.g.FUS1, FUS2, FIG1, FIG2, AGA1) [148].
Ste12 participates in an autoregulatory circuit whereby it
binds to its own promoter and upregulates its own expres-
sion[82,119]. Ste12 is constitutively bound to some promot-
ers in naive cells, and binds to other promoters only after
pheromone stimulation (presumably following Dig2 release)
[119,153]. The total number of promoters bound directly by
Ste12 seems to be less than 100[153].

The MAPKs, particularly Kss1, also regulate Ste12 by
a novel mechanism: repression of transcription by unacti-
vated MAP kinase[10,11,30,97]. Unphosphorylated Kss1
binds directly to Ste12, and potently represses Ste12-driven
transcription[10]. The Dig1 and Dig2 proteins are required
cofactors in Kss1-imposed repression of Ste12[11]; Kss1,
by virtue of its ability to bind to both Ste12 and Dig1/2,
may help anchor the latter to the former. Fus3 binds much
less strongly to Ste12 than Kss1 does[10], and is a corre-
spondingly weaker repressor[30]. Phosphorylation of Kss1
by Ste7 weakens Kss1–Ste12 binding and consequently re-
l ating
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expressed preferentially outside G1 phase[122]. On the other
hand, pheromone-regulated repression of G1 cyclin genes un-
doubtedly contributes to G1 arrest. Hence, gene repression
and cell-cycle arrest are highly interrelated.

Several other ‘Far’ proteins involved in pheromone-
imposed arrest have also been identified[26,64,73]. Recent
evidence suggests that these may not regulate the initial phase
of pheromone-imposed arrest, but are required to prevent pre-
mature recovery from arrest[73]. It is not known if any of
these proteins are regulated by MAPK phosphorylation.

Other substrates:Other MAPK substrates include several
upstream components of the pathway, including Ste5, Ste11
and Ste7; and negative regulators of the pathway including
Sst2 and Msg5. With the exception of Sst2 (see next section),
the function of these feedback phosphorylations are unclear.
Genetic evidence suggest that there must be other MAPK
substrates as well, involved in the regulation of cell-cycle
arrest and shmoo formation[27,44].

4. Signal Modulation

In the yeast pheromone response pathway, as in mam-
malian G-protein-coupled receptor pathways that respond to
peptide hormones and other stimuli, negative feedback loops
o tation
a so
c -
a y are:

se-

ion.
d by

ted,

the
ably

-

ces
ocy-

f G
e of

one,
ory-

ing
ced
t G(
G((
ieves Kss1-imposed repression, simultaneously activ
ss1 catalytic activity[10]. Repression of transcription
nactivated Kss1 plays a major role in the Kss1-depen
egulation of invasive growth genes. However, mating g
xpression is also shaped by this unusual mode of MA
ependent regulation[11,31].
Far1: Far1 protein is a multifunctional regulator of t

ating process. As detailed above, one function of Fa
o bind to G( and Cdc24GEF, and thereby stimulate the p
arized growth of the cell towards its mating partner. A s
nd, apparently independent, function of Far1 is to m
te pheromone-imposed cell-cycle arrest[22]. Mutants o
ar1 have been described that separate the arrest an

arity functions[16,52,140]. The mechanism by which Fa
romotes G1 arrest is unclear. It appear to involve the
ociation of Far1 with Cdc28, the cyclin-dependent kin
CDK) that is the master regulator of the yeast cell-c
68,138]. One model proposes that Far1 is a cyclin-depen
inase inhibitor (CKI)[113], but this is controversial[52]. It

s clear, however, that pheromone-induced cell-cycle a
equires Fus3-mediated phosphorylation of the Far1 pr
52]. Interestingly, relative to Fus3, Kss1 is a poor Far1
ase[17,112]; this may explain why Kss1 does not supp
heromone-imposed arrest as effectively as Fus3.

Microarray studies have shown that about 100 gene
epressed by at least two-fold in pheromone treated
122]. Essentially all mating-pheromone-regulated gene
ression requires Far1[122]. Pheromone-regulated gene
ression appears, for the most part, to be a conseq
f pheromone-imposed cell-cycle arrest; most pherom
epressed genes are subject to cell-cycle regulation an
-

perate at many levels to promote desensitization/adap
nd recovery[33]. This modulation of signal intensity is al
rucial for accurate gradient sensing[127]. Some of the neg
tive feedback mechanisms that operate in this pathwa

1. Bar1/Sst1 is an extracellular, pepsin-like protease
creted byMATa cells that degrades (-Factor.BAR1ex-
pression is induced following pheromone stimulat
There is probably not an equivalent activity secrete
MAT( cells.

2. The pheromone-bound receptor is phosphoryla
mono-ubiquitinated, and then endocytosed[126]. In
MATa cells (which express the (-Factor receptor),
kinase responsible for this phosphorylation is prob
casein kinase I[45,62], whereas inMATα cells (which
express thea-Factor receptor), Fus3MAPK may also par
ticipate[46].

3. Phosphorylation of the receptor tail further redu
pheromone sensitivity independent of receptor end
tosis[25].

4. Sst2 protein, a founding member of the regulator o
protein signaling (RGS) family, accelerates the rat
G(-mediated GTP hydrolysis by at least 20-fold[2]. The
expression of Sst2 is potently induced by pherom
and Sst2 stability may also be enhanced via phosph
lation by Fus3MAPK [51].

5. Following GTP hydrolysis, G( rebinds to G((, reform
inactive heterotrimer. The expression of G( is indu
by pheromone. Moreover, it has been proposed tha
may also stimulate desensitization independent of
sequestration[134].
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6. There are at least three GTPase-activating proteins
(GAPs) for Cdc42, which appear to regulate different
subsets of Cdc42 function[131].

7. Fus3 controls a negative feedback circuit that limits the
magnitude and duration of its own phosphorylation, as
well as that of Kss1. This Fus3-dependent feedback cir-
cuit plays a crucial role in preventing the mating signal
from leaking into other pathways[125]. The relevant tar-
get of Fus3 is not yet known.

8. Phosphatases operate at every level to reverse the actions
of the pathway kinases. For example, the tyrosine phos-
phatases Ptp2 and Ptp3, and the dual-specificity phos-
phatase Msg5, act on Fus3MAPK and Kss1MAPK [34,155].
Many of these phosphatase activities are constitutive, but
Msg5 is positively regulated at the transcriptional level
by pheromone. Dephosphorylation has the potential to
eventually reset the pathway to its pre-stimulated state.

9. Protein degradation would also eventually lead to
the replacement of activated components with newly-
synthesized, unactivated ones, thereby resetting the path-
way. But in addition, recent studies indicate that the
turnover of Ste7 and Ste11 is accelerated by pheromone
stimulation[42,145,147].

10. As soon as two mating cells fuse, the pheromone re-
sponse needs to be shut down. Special mechanisms have
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How many?There are about 10,000 pheromone recep-
tors on the surface of an unstimulated yeast cell, coupled to
about the same number of G-proteins. The amount of Ste5
and Ste11 in the cell are not known, but the endogenous lev-
els of both these proteins is notoriously difficult to detect
by immunoblot. The same is true of Ste7. For Ste7, semi-
quantitative immunoblotting has been used to determine that
there are no more than 1500 molecules/cell[8]. This is likely
a reasonable upper limit for Ste5 and Ste11 as well. Fus3 and
Kss1 are present at about 5000 molecules/cell in resting cells,
with Fus3 levels rising about four-fold following pheromone
stimulation[8]. The cellular concentration of Dig1, Dig2 and
Ste12 has not been determined, but there are only around 100
or so promoters to which Ste12 binds[153]. Some of these
have multiple Ste12-binding sites, but it probably takes no
more than 1000 Ste12 molecules to occupy all of them.

This counting exercise strongly suggests that substantial
amplification does not occur as the signal transits the pathway,
except perhaps at the Ste7MEK → MAPK step[48]. Certainly
signal amplification could not have been the driving force for
the utilization of a four kinase cascade to transmit this signal.

6. Conclusion
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evolved to accomplish this quickly[74,75,121,124]. A
slower, but more permanent solution is then impleme
when the transcription of many pathway compon
is repressed by the a1/(2 diploid-specific heterod
[61].

. Where, how fast, and how many?

Where?As indicated above, the G-protein subunits
he pathway are permanently tacked to membrane via
ently attached lipid groups, and recruit other pathway m
ers, such as Ste20PAK and Ste5, to the membrane wh
ctivated. Ste11MEKK and Ste7MEK are predominantly cy

oplasmic proteins[143,144], while Ste5 is predominant
ound the nucleus, or shuttling between the nucleus an
oplasm, in resting cells[98,144]. Kss1MAPK is concentrate
n the nucleus of resting cells, and this does not change
heromone treatment[93]. Fus3MAPK, in contrast, is abou
qually split between the nucleus and the cytoplasm in
timulated cells, and concentrates in the nucleus follo
timulation[15,28,144]. Ste5, Ste7 and Fus3 localize to t
f mating projections in pheromone-treated cells. Here,
emains stably bound, but activated Fus3 apparently dis
tes from Ste5 and translocates to the nucleus[144].
How fast?As measured by loss of fluorescence-reson

nergy transfer (FRET) between G( and G((, the G prote
aximally active within 30 s after pheromone addition[152].
ctivation of the MAP kinases can be detected within min

125]. Changes in gene expression have already begu
5 min[122].
The study of the yeast mating pathway played a sig
ant, if not predominant, role in establishing many signa
andmarks and paradigms. A fragmentary and incomplet
f these would include the following: The demonstration
(( subunits transmit the signal to downstream effectors

ombined use of gain and loss-of-function mutants to o
ene function in a signaling pathway; insight into how s
ific extracellular signals regulate cell-cycle progression
rst PAK, MEKK, MEK and MAP kinase cloned from an
rganism; the discovery of the first MAPK cascade sca
nd the discovery of the first regulator of G protein signa
urrently, yeast is one of the lead organisms for functi
enomic explorations. In the future, we can anticipate

t will lead us towards an integrated molecular and syste
evel understanding of a eukaryotic cell.
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