Team:Harvard/Hardware/MFCProcedure

From 2008.igem.org

(Difference between revisions)
m
m
Line 73: Line 73:
* 1" x 1" Nafion® membrane, 0.180mm thick
* 1" x 1" Nafion® membrane, 0.180mm thick
* 1" x 1" Carbon felt, 0.25" thick
* 1" x 1" Carbon felt, 0.25" thick
-
* 1" x 1" E-TEK ELAT™ GDE (platinum on carbon)
+
* 1.5" x 1.5" E-TEK ELAT™ GDE (platinum on carbon)
-
* 1' Titanium Grade 2 Wire .046" Diameter
+
* 2' Titanium Grade 2 Wire .046" Diameter
* Teflon Tape, 1/4" Width
* Teflon Tape, 1/4" Width
* 5" x 2.5" Silicone Sheet
* 5" x 2.5" Silicone Sheet
Line 107: Line 107:
# Construct Electrodes
# Construct Electrodes
-
#*
+
#* Cut titanium wire into one 8" piece and one 16" piece
-
#*
+
#* Using pliers, shape anode and cathode as shown
[[Image:electrodes.jpg | 600px]]
[[Image:electrodes.jpg | 600px]]
 +
#* Spear carbon felt with tip of anode titanium wire and wedge into frame
 +
#* Weave platinum carbon cloth through cathode titanium wire
 +
# Seal Injection Ports
# Seal Injection Ports

Revision as of 00:03, 30 October 2008



Running an MFC Experiment

This page is intended as a comprehensive guide to completing a microbial fuel cell setup and running an experiment from start to finish.

Creating a Testing Environment

Begin 1-2 weeks prior to experiment

Constructing Fuel Cell Components

Materials (per fuel cell)

  • 4" Polycarbonate Square Tube, 2" Outer Diameter
  • 6" x 6" Polycarbonate Sheet, 1/4" Thick
  • 4 Steel Fully Threaded Stud, 1/4"-20 Thread, 6" Length
  • 8 Zinc Alloy Wing Flange Nut, 1/4"-20 Screw Size, 1" Wing Spread
  • 1" x 1" Nafion® membrane, 0.180mm thick
  • 1" x 1" Carbon felt, 0.25" thick
  • 1.5" x 1.5" E-TEK ELAT™ GDE (platinum on carbon)
  • 2' Titanium Grade 2 Wire .046" Diameter
  • Teflon Tape, 1/4" Width
  • 5" x 2.5" Silicone Sheet
  • Silicone Glue
  • Spiral Point Tap 1/4"-28
  • 8 Plastic Luer Lock Coupling Nylon, Female to Male Thread, 1/4"-28

Procedure

  1. Mill Polycarbonate
    • Cut polycarbonate sheet into 4 equal 3" x 3" pieces
    • Drill four 3/8" holes through each piece, 1 per corner, indented 5mm from both sides

Endplates.jpg

    • Cut polycarbonate tube into two equal 2" halves
    • Drill four 1/4" holes through each half in configuration shown

Drilled tube.jpg

    • Tap each hole with 1/4" -28 spiral tap
  1. Glue Chambers (repeat for each half)
    • Center tube on endplate by marking plate with 'X' from corner to corner
    • Squirt 2mm thick line of silicone on edge of tube (edge furthest from holes)
    • Press tube firmly against marked location on endplate
    • Quickly spread excess silicone along edge
    • Let stand 24h to harden

Glued half.jpg

  1. Construct Gaskets
    • Cut silicone sheet into two equal 2.25" x 2.25" pieces
    • Cut out centered inner squares in each piece, 1.75" x 1.75"
    • Using inner squares, cut two 'O' rings, inner diameter 1/4", outer diameter 1/2"

Gaskets.jpg

  1. Construct Electrodes
    • Cut titanium wire into one 8" piece and one 16" piece
    • Using pliers, shape anode and cathode as shown

600px

    • Spear carbon felt with tip of anode titanium wire and wedge into frame
    • Weave platinum carbon cloth through cathode titanium wire


  1. Seal Injection Ports

Fin chamber.jpg



Setup of Digital Multimeter

Controlling the DMM with LabView™

Experiment Preparation

Begin 1 day prior to experiment

Assembling Chambers

Solutions Prep

Chamber media

  • 5.844 g/L 100mM NaCl
  • 15.1185 g/L 50mM PIPES (hydrogen)

7.0 pH

Phosphate buffer

  • 2.918 g/L Monosodium phosphate, monohydrate
  • 4.095 g/L Disodium phosphate, anhydrous
  • 5.844 g/L 100mM NaCl

7.0 pH

Gas Tubing Assembly

Growing Strains

Runtime

Begin 2 hours prior to experiment

Bacteria

Fuel Cells

Injections/Variables

Clean Up