Team:Imperial College

From 2008.igem.org

(Difference between revisions)
m
 
(41 intermediate revisions not shown)
Line 3: Line 3:
{{Imperial/Box1||
{{Imperial/Box1||
-
<html><center><img width="700px" src="https://static.igem.org/mediawiki/2008/9/94/Imperial_2008_Title.png"></center></html>
+
<html><center><img width="830px" src="https://static.igem.org/mediawiki/2008/9/94/Imperial_2008_Title.png"></center><font size="4pt"></html><center>'''<br>For the 2008 iGEM competition, the Imperial College Team aims to develop a genetically-engineered Biofabricator, using the Gram-positive bacterium ''Bacillus subtilis'' as our chassis. Our Biofabricator aims to produce self-assembling biomaterials in specified 3D shapes, using light as the trigger.'''<br><br><html></font>
-
<center>'''For the 2008 iGEM competition, the Imperial College Team aims to develop a genetically-engineered Biofabricator, using the Gram-positive bacterium Bacillus subtilis as our chassis. Our Biofabricator aims to produce self-assembling biomaterials in specified 3D shapes, using light as the trigger.'''<html><br><br><img width="350px" src="http://i59.photobucket.com/albums/g305/Timpski/Logo1.png"></html></center>
+
<table style="color:#2B48B3;background-color:transparent;"><tr><td><img style="vertical-align:center;" width="380px" src="http://i59.photobucket.com/albums/g305/Timpski/Logo1.png"></td>
-
*Light on
+
<!--<td style="text-align:center;"><br><i><font size="3pt" style="border:2px solid;padding:7px;"><b><a target="_blank" href="https://2008.igem.org/Team:Imperial_College/BioBricks">45 B. subtilis BioBricks submitted!</a></b></font><br><br><font size="3pt" style="border:2px solid;padding:7px;"><b><a target="_blank" href="https://2008.igem.org/Team:Imperial_College/Major_Results">BioBrick Characterisation</a></b></font><br><br><font size="3pt" style="border:2px solid;padding:7px;"><b>Chassis Characterisation</b></font><br><br><font size="3pt" style="border:2px solid;padding:7px;">Cell <b><a target="_blank" href="https://2008.igem.org/Team:Imperial_College/Motility">motility tracking</a></b></font><br><br><font size="3pt" style="border:2px solid;padding:7px;">Extensive <b><a target="_blank" href="https://2008.igem.org/Team:Imperial_College/Dry_Lab">modelling</a></b></font></i>-->
-
*Motility arrested
+
</td></tr></table><br><hr><center><font size="4pt" style="border:0px solid;padding:10px;">Pushed for time? <b><a target="_blank" href="https://2008.igem.org/Team:Imperial_College/Summary">Project Summary</a> | <a target="_blank" href="https://2008.igem.org/Team:Imperial_College/Summary#Results">Achievements</a> | Growing Clothes: <b><a target="_blank" href="https://2008.igem.org/Team:Imperial_College/Cellulose">BioCouture</a></b></font></center><hr><br></html>
-
*Biomaterial produced
+
-
*Light off
+
-
*Biomaterial production stopped, movement resumed
+
|}}
|}}
-
{{Imperial/Box1|Overview|*First by utilising an endogenous light-sensing mechanism, the bacteria is captured in the desired location using 3D holography.
+
{{Imperial/Box1|'''<html><font size=6px>Overview</font></html>'''|
 +
The following video is a simplified representation of how we want our system to work...
 +
<html><center><object width="425" height="350"> <param name="movie" value="http://www.youtube.com/v/pqEmKkY5DxA"> </param> <embed src="http://www.youtube.com/v/pqEmKkY5DxA" type="application/x-shockwave-flash" width="425" height="350"> </embed> </object></center></html>
 +
*First by utilising an endogenous light-sensing mechanism, the bacteria is captured in the desired location using 3D holography.
*Next bacterial locomotion is suspended in the region of interest using a recently-discovered clutch mechanism. This involves disengaging the flagellum from the motor protein.
*Next bacterial locomotion is suspended in the region of interest using a recently-discovered clutch mechanism. This involves disengaging the flagellum from the motor protein.
*Finally, when our bacteria are stationary in the correct location, the biomaterial production is triggered. These biomaterials can self-assemble to form a 3D bio-scaffold.
*Finally, when our bacteria are stationary in the correct location, the biomaterial production is triggered. These biomaterials can self-assemble to form a 3D bio-scaffold.
-
<html><center><img width="700px" src="http://i59.photobucket.com/albums/g305/Timpski/Comic.png"></center></html>
+
<html><center><img width="800px" src="http://i59.photobucket.com/albums/g305/Timpski/Comic_No_Title.png"></center></html>
-
 
+
<br>
-
Applications of our Biofabricator range from regenerative tissue engineering to BioCouture.
+
'''<html><center><font size=4px></html>Please continue on to our project pages - you may wish to start with our [[Team:Imperial_College/Project |>>> Project Specifications >>>''']]<html></font></center></html>
-
 
+
<br>
-
 
+
}}
-
Please continue on to our project pages - you may want to start with our [[Team:Imperial_College/Project/| '''>>> Project Specifications >>>''']]}}
+
<hr><br>
<hr><br>
{{Imperial/Box1||
{{Imperial/Box1||
The Imperial College Team 2008 has received sponsorship from a number of generous companies. We are grateful for their kind support.
The Imperial College Team 2008 has received sponsorship from a number of generous companies. We are grateful for their kind support.
-
<html><center><a href="http://www.bio-rad.com/"><img height="40px" src="http://i59.photobucket.com/albums/g305/Timpski/Biorad.png"></a><a href="http://www.fisher.co.uk/"><img height="50px" src="http://i59.photobucket.com/albums/g305/Timpski/Fisher.png"></a><a href="http://www.geneart.com/"><img height="25px" src="http://i59.photobucket.com/albums/g305/Timpski/Geneart.png"></a><a href="http://www.vwr.com/index.htm"><img height="50px" src="http://i59.photobucket.com/albums/g305/Timpski/VWR.png"></a></center></html>
+
<html><center><a href="http://www.bio-rad.com/"><img height="40px" src="http://i59.photobucket.com/albums/g305/Timpski/Biorad.png"></a><a href="http://www.fisher.co.uk/"><img height="50px" src="http://i59.photobucket.com/albums/g305/Timpski/Fisher.png"></a><a href="http://www.geneart.com/"><img height="25px" src="http://i59.photobucket.com/albums/g305/Timpski/Geneart.png"></a><a href="http://www.vwr.com/index.htm"><img height="50px" src="http://i59.photobucket.com/albums/g305/Timpski/VWR.png"></a></center>
 +
<center>We would also like to thank the members of the Center for Structural Biology for their help and support during our iGEM project.</center></html>
}}
}}
Line 32: Line 32:
<tr><td><ul id="sddm"></html>< Previous<html></ul>
<tr><td><ul id="sddm"></html>< Previous<html></ul>
</td><td><ul id="sddm"><a href="#">Back to top</a></ul>
</td><td><ul id="sddm"><a href="#">Back to top</a></ul>
-
</td><td><ul id="sddm"></html>Next ><html></ul>
+
</td><td><ul id="sddm"></html>[[Team:Imperial_College/Project |Next >]]<html></ul>
-
</td></tr></table>
+
</td></tr></table></center></html>
-
</center></html>
+
-
</div></td></tr></table>
+

Latest revision as of 09:06, 30 October 2008



For the 2008 iGEM competition, the Imperial College Team aims to develop a genetically-engineered Biofabricator, using the Gram-positive bacterium Bacillus subtilis as our chassis. Our Biofabricator aims to produce self-assembling biomaterials in specified 3D shapes, using light as the trigger.




Pushed for time? Project Summary | Achievements | Growing Clothes: BioCouture



Overview

The following video is a simplified representation of how we want our system to work...

  • First by utilising an endogenous light-sensing mechanism, the bacteria is captured in the desired location using 3D holography.
  • Next bacterial locomotion is suspended in the region of interest using a recently-discovered clutch mechanism. This involves disengaging the flagellum from the motor protein.
  • Finally, when our bacteria are stationary in the correct location, the biomaterial production is triggered. These biomaterials can self-assemble to form a 3D bio-scaffold.


Please continue on to our project pages - you may wish to start with our >>> Project Specifications >>>




The Imperial College Team 2008 has received sponsorship from a number of generous companies. We are grateful for their kind support.

We would also like to thank the members of the Center for Structural Biology for their help and support during our iGEM project.



    < Previous