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Spatially Resolved Modeling of Colicin-Induced Killing

and Chemotactic Sensing in Escherichia Coli

Abstract

As already desribed in the general introduction, the aim of our project was to develop a synthetical
killer/prey system. In this project, the chemotactic sensing in Escherichia coli and colicin-induced
killing of a prey strain have been modeled. Colicins are special proteins produced by E. coli that are
toxic to other bacteria. We have developed a system of partial differential equations (PDE) which
could accurately describe the chemotactic sensing of the prey strain by the killer cells. Parameters
were obtained from literature values. Numerous simulations with different parameters were run in
order to analyse its influence on the system, especially the efficiency of the killer cells.
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2 Chemotaxis Model Spatially Resolved Modeling of Colicin-Induced Killing and Chemotactic Sensing in E. Coli

1 Introduction

Spatio-temporal interactions of bacterial populations is a challenging and difficult task for modeling.
Bacterial strains can swim, respond to external chemicals, secrete their own signals for communication,
and even produce killing factors for other bacterial species. Many of these processes are non-linear
and proceed at different time and space scales.

Chemotaxis in Escherichia coli is one of the best studied systems of signal transduction (for
recent reviews see [1, 2, 3]). In common with many other bacteria, E. coli can migrate towards high
concentrations of attractants and avoid repellents. In the adapted state, cells perform a random walk,
which becomes biased in the presence of a spatial gradient of attractant. This swimming bias is based
on temporal comparisons of attractant concentrations during cell runs. If the direction of a run is
favorable, i.e. up the attractant gradient or down the repellent gradient, the run becomes longer.
Between two runs, the cell tumbles and reorients for the next run [4].

A number of detailed mathematical models of chemotaxis have been proposed [5, 6, 7, 8, 9, 10,
11, 12] which simulate the relations between intracellular components of the signaling network (for a
recent review see [13]). However, on a long time scale, the behavior of chemotactic bacterial population
can be described by (relatively) simple mechanisms in the terms of Partial Differetial Equations (for
a recent review see [14]). In the PDE description, the cell densitites and the chemical concentrations
are described using unknown functions of time and space variables, and their derivatives.

In this work, the spatio-temporal interactions of the killer-prey system are modeled. The killer
strain is able to swim towards the prey population using the gradient of Autoinducer-2 (AI-2) secreted
by the prey. In the vicinity of prey, the killer strain eliminates the prey by the Autoinducer-1-induced
colicin secretion. Colicins can act in several ways. Some form pores in the inner membrane (Colicin
E1), others have enzymatic activities (Colicin E9), which act as nuclease in the cytoplasm [15, 16].
Colicin-producing cells also posses an immunity protein which protects them. Yet in the case of group
A colicins, on which the system and model are based on, a lysis protein is also produced causing cell
lysis of the killer bacteria [16]. The signal molecules of AI-1 are secreted by the prey cells and adsorbed
by the killer cells, in which they activate the production of the colicin and lysis proteins. The killer
cells then lyse and release the colicin which diffuses and kills the preys in the surrounding medium.

We considered two different models shown in Figure 1. In the first model, we designed a minimal
system of four non-linear reaction-diffusion PDEs to simulate the chemotactic motility of the killer
population towards the prey, and the colicin killing process (Fig. 1(a) & 1(b)). To simulate the
system, we approximated the original system of four PDEs by a system of 10,000 ODEs (method of
lines), and solved it numerically using custom-written Matlab code. Here, AI-2 and AI-1 dynamics
are modeled together by one equation (Fig. 1(a)), assuming that their secretion and diffusion rates are
similar. In the second approach the two Autoinducer molecules are modeled by two separate equations
(Fig. 1(b)).

2 Chemotaxis Model

The first model, in which AI-1 and AI-2 dynamics are considered simultanously, consisting of four
equations: prey population (u), killer population (v), colicin concentration (c) and Autoinducer con-
centration (a2). The prey cells cannot use chemotaxis, because a flagellin knock-out strain was used in
the experiments. Thus the prey cell concentration can be delineated by a simple diffusion and death
term caused by colicin susceptibility. Prey cells are killed by colicin at a rate which is a product of the
colicin concentration (c), prey cell density (u) and the adsorption rate of colicin by prey cells (δu)[17].

∂u

∂t
= Du∆u− δucu. (1)
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(a) (b)

Fig. 1: Graphical representation of the modeling system. (a) In the first system AI-1 and AI-2 are modeled
together in one equation. Thus AI-2 is the chemoattractant and also responsible for colicin production. (b). AI-1 and
AI-2 dynamics are modeled seperately which results in a more realistic model. AI-2 is only the chemoattractant, colicin
production is induced by AI-1.

The killer population (v) on the other hand can diffuse and utilize chemotaxis to swim along the
gradient of the chemoattractant. Furthermore, the killer cell concentration decreases due to cell lysis
upon colicin secretion [17] whereas colicin production depends on the Autoinducer concentration. The
chemotaxis term is based on the model by Tyson et al. [18] and on the first chemotaxis model by
Keller and Segel [19].

∂v

∂t
= Dv∆v − α∇(χ(a2)v∇a2)− δva2v (2)

Parameter α reflects the chemotactic strength towards the chemoattractant. Colicin (C) and Autoin-
ducer (a2) dynamics are modeled with a diffusion and production term. The first approach was to use
saturation kinetics for production.

∂c

∂t
= Dc∆c + βc

v2

µc + v2
(3)

∂a2

∂t
= Da2∆a2 + βa2

u2

µa2 + u2
(4)

Experimentalists from our team and other results ([16][20]) suggested exponential production of col-
icin and Autoinducer, which is modeled as a linear term in the differential equation. The colicin
concentration increases proporptional to the number of lysed cells and colicin molecules released per
cell lysis [17].

∂c

∂t
= Dc∆c + βcδva2v (5)

∂a2

∂t
= Da2∆a2 + βa2u (6)

It was also considered to add degradation terms for colicin and Autoinducer, but experimentalists
from our team suggested that in the observed time span degradation can be neglected. The final
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system of equations modeling AI-1 and AI-2 dynamics the same has the following structure.

∂u

∂t
= Du∆u− δucu

∂v

∂t
= Dv∆v − α∇(χ(a2)v∇a2)− δva2v

∂c

∂t
= Dc∆c + βcδva2v

∂a2

∂t
= Da2∆a2 + βa2u (7)

In this system both Autoinducer prodcution rates and diffusion constants are considered to be identical.
To make it more realistic the idea was to model their dynamics seperately. Thus another equation for
Autoinducer-1 was added to the system. Since both molecules are similar the basic structure looks
the same. AI-1 is, like AI-2, produced by the prey cells.

∂a1

∂t
= Da1∆a1 + βa1u (8)

Besides adding another equation for AI-1 dynamics it must also be considered that colicin production
is induced by AI-1, so the lysis term for the killer cells and production term for colicin need to be
adopted by substitution of a2 by a1. Thus the final model system with different Autoinducer dynamics
looks the following.

∂u

∂t
= Du∆u− δucu

∂v

∂t
= Dv∆v − α∇(χ(a2)v∇a2)− δva1v

∂c

∂t
= Dc∆c + βcδva1v

∂a1

∂t
= Da1∆a1 + βa1u

∂a2

∂t
= Da2∆a2 + βa2u (9)

u(x, t) ∈ c2,1 (Ω × [0, T ]) describes the prey cell concentration, v(x, t) ∈ c2,1 (Ω × [0, T ]) presents the
killer cell concentration, c(x, t) ∈ c2,1 (Ω× [0, T ]) the colicin concentration, a1(x, t) ∈ c2,1 (Ω × [0, T ])
Autoinducer-1 concentration and a2(x, t) ∈ c2,1 (Ω× [0, T ]) the chemoattractant concentration (AI-2).
The C2,1 notation stands for functions with continuous second derivative in space and first derivative
in time. Du, Dv, Dc, Da1 , Da2 ∈ R are diffusion coefficients for u, v, c, a1 and a2 respectively, and δu,
βa1 , βa2 , α, βc, δv ∈ R are model parameters which can be related to experimental observations.

χ(S) =
αKd

(Kd + S)2

is the sensivity function of a chemoattractant S with dissociation constant Kd.
The biological meanings of the mathematical terms on the right-hand sides of (7) and (9) are as

follows.
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Spatially Resolved Modeling of Colicin-Induced Killing and Chemotactic Sensing in E. Coli 3 Parameter estimation

First equation:

1. Diffusion of prey cells. Cell migration is
modelled the same way as molecular diffu-
sion, based on a random walk

2. Death of prey cells due to colicin actions

Second equation:

1. Diffusion of killer cells

2. Chemotaxis along the gradient of c towards
prey cells

3. Lysis of killer cells due to colicin secretion

Third equation:

1. Diffusion of chemoattractant (AI-2)

2. Secretion of chemoattractant by prey cells

Fourth equation:

1. Diffusion of colicin

2. Secretion of colicin by prey cells

Fifth equation (only in (9)):

1. Diffusion of AI-1

2. Secretion of AI-1 by prey cells

A discussion of the parameter values will be presented in the next section. Table 1 contains a list of
parameters together with meanings and suitable values.

3 Parameter estimation

The Diffusion constant of colicin is

Dc = 4.2 · 10−5 mm2

s
[21].

Diffusion constants for AI-1 and AI-2 were estimated with that of aspartate as

Da1 = Da2 = 8.9 · 10−4 mm2

s
[22].

Diffusion constants for the two bacterial populations were calculated as

Du = Dv =
v2
cell · Trun

2 · (1− 0.33)
[23].

vcell is the average cell speed of 0.02 mm
s [24]. Trun is the average time between two random walks with

an average value of 1 s [22]. The adsorption rate of colicin by the prey population is

δu = 6.3 · 10−11 ml
molecule h

= 184.2
L

g · s
[17]

with a molecular weight for Colicin E1 of 57,279 Da [25] which are 9.5 · 10−20 g. The lysis rate for
the killer population is approximately 2.28 · 10−5 s−1 [17]. In our model, we need a second order rate
constant, so it is further assumed that colicin production also depends on the binding of AI-1 to the
cell surface. For the binding constant, the dissociation constant of aspartate (9.44 · 10−4 g

l [26]) is
used. Taking lysis rate and dissociation constant into account a lysis rate of second order is achieved
as

δv =
2.28 · 10−5

9.44 · 10−4

L
g · s

= 0.024
L

g · s
With each lysing killer cell about 100,000 colicin molecules are released [17]. βC is approximated as
the ratio of colicin released per cell (dry weight of 300 pg [27]). Thus

βc = 0.032
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For both Autoinducer molecules no production rates could be found, likely because the amount of
Autoinducer produced depends on the promoter acitivity and also on external stimulus. It is assumed
that the diffusion of the Autoinducer is the limiting step in its secretion, thus it should be in the same
order as the diffusion coefficient. Experimental results demonstrated that about 89 % of produced
Autoinducer is secreted [28]. Thus the secretion rates for AI-1 and AI-2 are estimated as

βa1 = βa2 = 0.89 · 8.9 · 10−4 s−1

Table 1 summaryses all parameters with estimated values.

Table 1: Model Parameters used in the 5 equation model given with its biological meaning and suitable value.

Parameter Biological Meaning Value Ref
Du diffusion coefficient of prey cells in [mm2]/[s] 3 · 10−4 [22][23][24]
Dv diffusion coefficient of killer cells in [mm2]/[s] 3 · 10−4 [22][23][24]
Dc diffusion coefficient of colicin in [mm2]/[s] 4.2 · 10−5 [21]
Da1 diffusion coefficient of Autoinducer-1 in [mm2]/[s] 8.9 · 10−4 [22]
Da2 diffusion coefficient of Autoinducer-2 in [mm2]/[s] 8.9 · 10−4 [22]
δu rate of colicin adsorption by prey cells in [l]/([g][s]) 184.2 [17]
δv lysis rate of killer cells combined with dissociation constant

for binding of AI-1 to the cell in [l]/([g]s])
0.024 [17][26]

βc ratio of colicin molecules released per cell 0.032 [17][25][27]
βa1 rate of Autoinducer-1 secretion in 1/s 0.89 · 8.9 · 10−4 [28]
βa2 rate of Autoinducer-2 secretion in 1/s 0.89 · 8.9 · 10−4 [28]

4 Numerical Methods

In this section it is explained how a system of four or five PDEs can be solved numerically. This method
is illustrated for a system which consists of four PDEs and can be extended to solve a five-equation
system numerically.
To numerical integrate ODEs or PDEs the finite difference method is used:

∂u

∂x
(i) ≈ u(i + 1)− u(i)

hx
(forward)

∂u

∂x
(i) ≈ u(i)− u(i− 1)

hx
(backward)

∂u

∂x
(i) ≈ u(i + 1)− u(i− 1)

2hx
(central)

The second derivative is approximated as follows.

∂2u

∂x2
(i) ≈

u(i+1)−u(i)
hx

− u(i)−u(i−1)
hx

hx
=

u(i + 1)− 2u(i) + u(i− 1)
h2

x

To integrate a PDE numerically, the method of lines (MOL) [29] was used. The idea of this method is
to discretize the spatial variables (Fig. 2) and then solve a system of ODEs numerically, for example
with the standard routine ode45 of Matlab.

-7-
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Fig. 2: Spatial Discretization of an area of Lx × Ly for width and height respectively.

Since the chemotaxis system is two dimensional, the laplace operator ∆z, z ∈ {u, c, v, S} has to be
discretized for x- and y-direction, so for each equation a finite grid of finite values is obtained for x
and y with height Ny and width Nx.

To use MOL it is necessary that the PDE problem be well-posed as an initial value (Cauchy)
problem in at least one dimension. Therefore initial and boundary conditions need to be specified:
conditions for inner points and boundary conditions for each corner and border. For the specification
a conversion was done as follows:

u(i, j), a2(i, j), v(i, j), c(i, j) ⇒ U(i), i = 1, ..., 4NxNy.

U(1) corresponds to the left bottom corner, U(4Nx) corresponds to the right bottom corner and
U(4NxNy) corresponds to the right top corner of the four linked grids. Furthermore a variable

Nrow := 4Nx(j − 1)

was defined which should help to address each component of the Matrix U(i)i=1,...,4NxNy . This results
in the following increments:
Increment by x:

u(i± 1, j) = U(Nrow + i± 1)
a2(i± 1, j) = U(Nrow + i± 1 + Nx)
v(i± 1, j) = U(Nrow + i± 1 + 2Nx)
c(i± 1, j) = U(Nrow + i± 1 + 3Nx)

Increment by y:

u(i, j ± 1) = U(Nrow + i± 4Nx)
a2(i, j ± 1) = U(Nrow + i± 4Nx + Nx)
v(i, j ± 1) = U(Nrow + i± 4Nx + 2Nx)
c(i, j ± 1) = U(Nrow + i± 4Nx + 3Nx)

For the inner points two nested for-loops were used, one for the x- and one for the y-direction to
address the components of the matrix U specifying the equations of our PDE model. For the boundary
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Fig. 3: Spatial discretization of a four equation system

conditions only one for-loop for the x- or the y-direction respectively was needed and for the corner
points (0, 0), (0, L), (L, 0) and (L, L) the equations were specified directly.

At the four boundaries one point has only three neighbour points instead of four, so it was necessary
to specify a ghost point. This was done by reflecting the conditions of the opposite point. For example
a point at the boundary x = 0 is

∂2z

∂x2
(i) ≈ 2z(i + 1)− 2z(i)

h2
x

, z ∈ {u, c, v, S}

The laplace operator for y does not have to be modified in this boundary and in x = L. In the
boundaries y = 0 and y = L the laplace operator for x does not have to be modified but ∂2z

∂y2 , z ∈
{u, c, v, S} has to be the same as for ∂2z

∂x2 . In the four corners one point has only two neighbour
points instead of four, so two ghost points had to be specified here the same way as was done in the
boundaries.

An example shall show how the MOL method is utilized to numerically integrate the Keller-Segel PDE

ut = D∆u−∇(χ(S)u∇S)

where D is the diffusion coefficient of the cells and χ(S) = αKd
(Kd+S)2

is the sensitivity function of the
chemoattractant S with dissociation constant Kd. The MOL approximation is

dui

dt
= D

u(i + 1)− 2u(i) + u(i− 1)
h2

x

− 1
hx

[
0.5(χ(i + 1) + χ(i))

S(i + 1)− S(i)
hx

− 0.5(χ(i) + χ(i− 1))
S(i)− S(i− 1)

h2
x

]
,
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where χ(i) = u(i)α2
s

n
Kd

(Kd+S(i))2
.

Regarding a system consisting of five PDEs the method is quite the same except for few changes:

Fig. 4: Spatial discretization of the five equation system

One grid has to be added for the fifth component, the Autoinducer-1. So the conversion and the Nnrow

variable changes to:

u(i, j), a2(i, j), v(i, j), c(i, j), a1(i, j) ⇒ U(i), i = 1, ..., 5NxNy

and
Nrow := 5Nx(j − 1).

U(1) still corresponds to the left bottom corner, U(5Nx) corresponds to the right bottom corner and
U(5NxNy) corresponds to the right top corner of the five linked grids. With these increments it is
possible to address every component of the new matrix U(i)i=1,...,5NxNy .
Increment by x:

u(i± 1, j) = U(Nrow + i± 1)
a2(i± 1, j) = U(Nrow + i± 1 + Nx)
v(i± 1, j) = U(Nrow + i± 1 + 2Nx)
c(i± 1, j) = U(Nrow + i± 1 + 3Nx)

a1(i± 1, j) = U(Nrow + i± 1 + 4Nx)

Increment by y:

u(i, j ± 1) = U(Nrow + i± 5Nx)
a2(i, j ± 1) = U(Nrow + i± 5Nx + Nx)
v(i, j ± 1) = U(Nrow + i± 5Nx + 2Nx)
c(i, j ± 1) = U(Nrow + i± 5Nx + 3Nx)

a1(i, j ± 1) = U(Nrow + i± 5Nx + 4Nx)

For the inner points, the boundary conditions and corner points, the fifth equation just has to be
added and the rest stays the same.
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5 Simulation Results

Simulations were performed in Matlab R© (2008a, The Mathworks, Inc.) of 2 h simulation time.
Computation time was about 5-6 hours. Initial simulations were run with estimated parameters
shown in Table 1 and different spatial distributions of killer and prey strains. In one set of simulations
prey strains were equally distributed and killer cells set in one corner. Secondly, simulations were
done with prey cells set in the center of the area and killer cells uniformly around them. In simulation
movies concentration levels are encoded with different colors from white to yellow over red and finally
black. White color depicts highes concentrations and black a concentration of zero with decreasing
concentration inbetween. If not stated otherwise, an initial cell density of 109 cells/ml was used, which
is typical for an E. coli overnight culture.

5.1 Four-PDE System

Initial simulations were run with the basic Four-PDE system. Figure 5 shows the result for placing
the killer in the front corner and prey equally distributed. A more detailed focus was laid on the more

(a) (b)

Fig. 5: Simulation results for equally distributed prey and killer in corner. (a) System at about 6 min. The
killer population rapidly dies due to colicin production and cell lysis. Colicin concentration is highest in the corner of
about 0.6 · 10−3 g

L
and diffuses over the plane. Prey cells only diffuse and die because of colicin interaction. It can be

seen that after 2 h (b) little over half the prey population is dead. Parameters were used like in Table 1.

comprehensive Five-PDE system, because parameters for AI-1 and AI-2 could be varied independently.
Those results are discussed in the following section.

5.2 Five-PDE System

Figure 6 shows the system where prey cells were uniformly distributed and killer cells positioned in
the front left corner with initial parameters. It shows a similar outcome like for the Four-PDE system.
As killer cells move out, prey density decreases. AI-1 and AI-2 gradients have the same profile as prey
concentration. After two hours only about half the prey bacteria are dead. This is due to the fact
that chemotactic activity of the killer cells is very low, which is a result of high AI-2 concentration.
Chemotactix works best at low attractant concentration and steep gradient. This could be shown by
decreasing AI-2 production to 1

100 of the original value, which yielded much better swarming of the
killer cells and almost complete death of prey after 2 hours (Fig. 7).
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(a)

(b)

Fig. 6: Simulation results for equally distributed prey and killer in corner. (a) System at about 4 min. The
killer population rapidly dies due to colicin production and cell lysis. Colicin concentration is highest in the corner of
about 1− 2 · 10−4 g

L
and diffuses over the plane. Prey cells only diffuse and die because of colicin interaction. It can be

seen that after 2 h (b) about half the prey population is dead. Parameters were used like in Table 1.
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(a) (b)

Fig. 7: Simulation results with 1
100

AI-2 production. Displayed are prey and killer densities. Obviously, chemotaxis
activity of the killer cells is much higher, as they swarm almost over the complete area. The concentration profiles for
AI-1 and AI-2 look similar to the original ones. Same applies for colicin, only that is more stretched over the plane. The
further swarming of killer bacteria results in much better killing efficiency due to a larger distribution of colicin.

In real applications though it will not be possible to influence production rates of the chemoattractant.
Therefore additional simulations were performed with higher chemotactic activity, reflected by the
parameter α in Eq. 2, as this could be influenced experimentally by optimizing the ligand-binding
domain of the chemotaxis receptor. Doubling chemotactic attraction towards AI-2 already resulted in
death of more than half of prey. Setting it to 4-fold of its initial value, yielded a quite similar outcome,
as for 1/100 AI-2 production (Fig. 8).

(a) (b)

Fig. 8: Simulation results with 4-fold chemotactic activity. (a) At the beginning, killer cells rapidly swarm across
the plane following the AI-2 gradient. Thus colicin is much farther distributed and can kill the prey more effectively. (b)
After 2 h almost all prey bacteria have been killed by predator cells, which also decrease du to cell lysis.

We were also interested how effective the sensing and killing mechanism works, if there were much less
killer bacteria than prey. Ratios of 1/100 and 1/1000 of killer/prey were tested. Already with 1/100
initial cell density, no effective chemotaxis and killing could be observed. Probably there were to few
cells and lysis of all killer bacteria occured too fast. It may be possible that complete death occured
at some point, but then degradation of AI-1, AI-2 and colicin should be taken into account.

Besides setting the killer population in one corner with evenly distributed prey, we performed
simulations with prey in the center and killer positioned around them (Fig. 9). This resulted in rapid
killing of prey. Killer and colicin showed a standard 2D gaussian distribution over the whole simulation
time. AI-1 and AI-2 did as well in the beginning, but equilibrated with proceeding time.
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(a)

(b)

Fig. 9: Simulation results for centered prey and killer around them. Already after about 2 min (a) prey cells
have diminished greatly. The prey concentration rises dramatically, but decreases afterwards due to cell lysis upon colicin
production. Colicin and Autoinducer distribution looks similar to a standard gaussian distribution. Both Autoinducer
diffuse outward with increasing time. After 90 min (b) nearly all prey cells are dead. Killer cells also diminish to a final
concentration of about 1 g/l after 2 h (not shown).
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6 Conclusions

We studied the spatio-temporal behaviour of the synthetic predator/prey system using a system of
non-linear Partial Differential Equations (PDE). We have designed a minimal system consisting of
four PDEs, to model the chemotactic motility of the killer cells towards the prey bacteria, and killing
with colicin. Furthermore, in a more comprehensive approach, we added another PDE to simulate the
dynamics of AI-1. The PDE system was numerically solved in matlab using the method of lines.

We could demonstrate that the killer strain can swim towards the prey cells using the AI-2 gradient
and kill them. Most important for effective killing is the chemotactic activity towards prey. This is
either accomplished by a steep attractant gradient, or high sensitivity of the chemotaxis receptor to
the chemoattractant. The receptor sensitivity could possibly be altered by sequence optimization
of the protein. Further we could demonstrate, that killer cells need to be present in a quite high
concentration for good killing, due to lysis of the cells upon colicin production. An idea to circumvent
this, is usage of a different killing mechanism, i.e. bacteriophages. This mechanism is likely to be more
effective, because of the domino effect. Alternatively a different toxin could be used, to wich the killer
bacteria are immune. Another reason for the fast decrease of killer cells is the rapid production of
colicins. Killing could be made more effective, if colicin production is really only induced in the near
vicinity of prey, which could be accomplished by usage of a signalling molecule that is either produced
very slowly, with a delay compared to the chemoattractant or if it is very low diffusible.
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