
Background

Interaction of bacterial populations is a challenging and difficult task for mod-
elers. Bacterial strains respond to external chemicals, secrete their own signals
for communication, and even produce killing factors for other bacterial species.
Many of these processes are non-linear and proceed at different time and space
scales.

Motivation

In our project we construct a system of two bacterial strains, in which one pop-
ulation (killer strain) chemotactically senses the chemical signal AI-2 emitted
by another population (prey). The killer strain is able to swim towards the prey
population using the gradient of AI-2. In the vicinity of prey, the killer strain
eliminates the prey. We considered two alternative killing mechanisms: colicin
secretion and λ-phage infection.

Our achievements

We studied the system behavior in space and time using systems of non-linear
Partial Differential Equations (PDEs). Systems of PDEs are widely used in sci-
ence in a variety of problems, from tornadoes prediction to quantum mechanics.
Unlike ordinary differential equations (ODEs), PDEs enable simulation of spa-
tial effects in time, taking into account diffusion effects and spatial fluxes. This
is particularly important when the system is not homogeneous. In our case,
the killer population swims towards the prey population, and chemical signals
require a certain time to diffuse through the medium. We designed a minimal
system of four non-linear reaction-diffusion PDEs to simulate the chemotactic
motility of the killer population towards the prey, and the colicin killing pro-
cess (Fig. 1a,b). To simulate the system, we approximated the original system
of four PDEs by a system of 10,000 ODEs (method of lines), and solved it
numerically using custom-written Matlab code.

In a more comprehensive PDE model, we added the fifth PDE to reflect the
dynamics of AI-1 (Fig. 1c,d). AI-1 is secreted by the prey cells and adsorbed
by the killer cells, in which it activates the production of the colicin and lysis
proteins. The killer cells induced by AI-1 lyse and release the colicin into the sur-
rounding media, resulting in the prey elimination. The extended model allowed
us to reflect every key component of the system, and to simulate the interaction
of the killer and prey populations at different initial spatial distribution and
various system parameters.

In the case when both populations are well mixed in spatially homogeneous
conditions, we modeled another possible killing mechanism – the infection by
lambda-phages. Here the prey cells can become infected either by conjugation
with killer cells or by free phages, which in both cases leads to lysis of the
prey cells and to a release of multiple new phages, initiating a snowball effect.
The assumption of spatial homogeneity allowed us to better resolve the temporal
behavior of this complex system. To model the lambda-phage infection, we used
a system of delay differential equations (DDEs) (Fig. 2-a,b). Unlike ordinary
differential equations (ODEs), DDEs allow the temporal change in concentration
to depend on concentrations at earlier time points. In our system, we used
this method to reflect the fact that phage maturing cannot be arbitrary fast,
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Figure 1: The spatial models for chemotaxis of the killer strain to the prey and
the colicin-induced killing process. (a) The minimal model with four compo-
nents, where AI-1 is assumed to have the same production and diffusion rates
as AI-2, both described by Eq. 4. (b) The corresponding system of four partial
differential equations. (c) The extended model with five components, where AI-
1 dynamics is modeled explicitly. (d) The corresponding system of five partial
differential equations.
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but takes a certain time to develop. A careful model verification enabled us to
simulate the infection dynamics in detail, including the formation of conjugation
complexes and the snowball killing effect. To perform a detailed mathematical
analysis, we reduced the full model to a simpler ODE version (Fig. 2-c,d).
For the ODE system, we determined its steady states with the linear stability
analysis and investigated their stability with the initial values analysis, enabling
to predict different system regimes upon given parameters and initial conditions.
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Figure 2: The models of E. coli infection by lambda-phages. (a) The scheme
of the full model. (b) The DDE system which describes the full model of the
phage infection. The time delays are included in the equations for infected
cells (y) and free phages (v). (c) The key components and interactions of the
simplified model. (d) The ODE system which describes the simplified model of
lambda-phage infection.
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