Team:Slovenia/Results/Real-life results
From 2008.igem.org
Line 166: | Line 166: | ||
---- | ---- | ||
- | + | ||
Revision as of 03:15, 30 October 2008
|
||||||||
| ||||||||
|
||||||||
Expression of DNA vaccine coding for multi-TMTIR4-GFP immunogen is detected in vivo in animals using non-invasive optical imaging. DNA vaccine construct (multi-TMTIR4-GFP) tagged with the reporter GFP gene was electroporated into the right leg muscle musculus tibialis cranialis. (A) Transcutaneous image under fluorescent stereoscope – arrows indicate GFP expression. (B) Same area as in part A but the image was taken under the white light illumination. (C) Positive control: leg muscle electroporated with a plasmid coding for an enhanced GFP reporter gene (pEGFP-N1, Clontech laboratories USA) showing areas of GFP expression (arrows).
To explore the potential of CF-multi and CF-UreB recombinant protein as an effective vaccine for prophylactic protection of C57BL/6J mice against prospective infection with H. pylori, serum IgG antibody responses were examined by ELISA. Samples were collected in the third week after the first vaccination. CF-multi (Fig. A), UreB (Fig. B) and heat-killed whole cell preparations of H. pylori were used as antigens for coating. Non-immunized mice served as controls. Dilution series and antibody titers of anti-CF-multi protein vaccine are presented in Fig. A below whereas titers of anti-CF-UreB antibodies are shown in Fig. B below. Results unequivocally demonstrate that the prophylactic immunization with both engineered chimeric flagellin recombinant proteins induced a significant increase in antigen-specific serum IgG antibodies already 3 weeks post vaccination suggesting an intense immune response to our vaccines. Moreover, anti-CF-multi and anti-CF-UreB antibodies also reacted with heat-killed H. pylori antigens as well as with living bacteria, which was demonstrated also by flow cytometry (see below). This implies that serum antibodies recognize not only purified recombinant protein molecules (Figs. A and B), but also native epitopes of H. pylori. This result suggests that vaccination with our engineered recombinant proteins should be capable of establishing immune system memory to mobilize relevant immune cells once an animal is challenged with H. pylori infection.
Additionally, we tested whether sera of mice immunized with CF-multi contained antibodies specific for ureaseB (Fig.C) and whether sera of mice immunized with CF-UreB (Fig. D) contained antibodies specific for chimeric flagellin. Indeed, ELISA test showed that both, urease B epitope and chimeric flagellin induce serum antibody production as shown in the figures below.
In addition to evaluating antibody production to our recombinant protein vaccines, we also tested whether immunized serum recognizes live Helicobacter pylori bacteria, that would be encountered during infection. To examine this, flow cytometry analysis using goat F(ab)2 anti-mouse IgG-PE was applied and demonstrated that serum IgG indeed interacted with H. pylori. As presented in Fig. A bellow, serum of non-immunized animals did not react with bacteria, whereas serum of animals, immunized with CF-multi recombinant protein recognised bacteria (Fig. C), indicating that opsonizing serum IgG antibodies could induce a cell-mediated process of eradicating the bacterial enemy.
Serum from chimeric flagellin-multiepitope immunized mice reacts with live H.pylori bacteria. Analysis of interactions of serum antibodies with Helicobacter pylori by flow cytometry. H. pylori was harvested from a liquid culture and incubated for 1h with/without serum. After washing, it was incubated for another 1h with secondary goat F(ab)2 anti-mouse IgG-PE and analyzed on a Epics Altra (Beckman-Coulter Electronics) Flow Cytometer Cell Sorter. A: Negative control: Helicobacter pylori incubated with serum of non-immunized animal. B: Secondary antibody specifity control: Helicobacter pylori with secondary antibodies only. C: Helicobacter pylori incubated with serum of immunized animal.
Future studies involving infection of prophylactically vaccinated animal models with H. pylori and evaluation of the decrease in colonization of bacteria in the stomach will further determine how the identified vigorous and early antibody response will translate to eventual therapeutic effect and possibly eradication of the induced infection. On the other hand, we will also examine a therapeutic value of our vaccines by first challenging H. pylori-free mice with these bacteria and evaluate a potential of vaccinations of already infected animals to eradicate H. pylori.
|
||||||||
|