Team:Paris/Modeling/More FP Algo
From 2008.igem.org
(Difference between revisions)
(New page: <html> <style type="text/css"> pre {font-size: 1.2em} span.keyword {color: #0000FF} span.comment {color: #228B22} span.string {color: #A020F0} span.untermstring {color: #B20000} span.sysc...) |
(→find_P) |
||
Line 16: | Line 16: | ||
== find_ƒP == | == find_ƒP == | ||
- | + | <html><pre class="codeinput"> | |
+ | <span class="keyword">function</span> optimal_parameters = find_FP(X_data, Y_data, initial_parameters) | ||
+ | <span class="comment">% gives the 'best parameters' involved in f4, f5, f6, f7 or f8 | ||
+ | </span><span class="comment">% with FlhDC = 0 or FliA = 0 by least-square optimisation | ||
+ | </span> | ||
+ | <span class="comment">% X_data = vector of given values of [FliA]i or [FlhDC]i (experimentally | ||
+ | </span><span class="comment">% controled) | ||
+ | </span><span class="comment">% Y_data = vector of experimentally measured values f4, f5, f6, f7 or f8 | ||
+ | </span><span class="comment">% corresponding of the X_data | ||
+ | </span><span class="comment">% initial_parameters = values of the parameters proposed by the literature | ||
+ | </span><span class="comment">% or simply guessed | ||
+ | </span><span class="comment">% = [beta, K -> (K)/(coef), n] | ||
+ | </span> | ||
+ | <span class="keyword">function</span> output = act_pProm(parameters, X_data) | ||
+ | <span class="keyword">for</span> k = 1:length(X_data) | ||
+ | output(k) = parameters(1)*hill(X_data(k), parameters(2), parameters(3)); | ||
+ | <span class="keyword">end</span> | ||
+ | <span class="keyword">end</span> | ||
+ | |||
+ | options=optimset(<span class="string">'LevenbergMarquardt'</span>,<span class="string">'on'</span>,<span class="string">'TolX'</span>,1e-10,<span class="string">'MaxFunEvals'</span>,1e10,<span class="string">'TolFun'</span>,1e-10,<span class="string">'MaxIter'</span>,1e4); | ||
+ | <span class="comment">% options for the function lsqcurvefit | ||
+ | </span> | ||
+ | optimal_parameters = lsqcurvefit( @(parameters, X_data) act_pProm(parameters, X_data),... | ||
+ | initial_parameters, X_data, Y_data, options ); | ||
+ | <span class="comment">% search for the fittest parameters, between 1/10 and 10 times the initial | ||
+ | </span><span class="comment">% parameters | ||
+ | </span> | ||
+ | <span class="keyword">end</span> | ||
+ | </pre></html> | ||
</div> | </div> |
Latest revision as of 03:46, 30 October 2008
find_P
function optimal_parameters = find_FP(X_data, Y_data, initial_parameters) % gives the 'best parameters' involved in f4, f5, f6, f7 or f8 % with FlhDC = 0 or FliA = 0 by least-square optimisation % X_data = vector of given values of [FliA]i or [FlhDC]i (experimentally % controled) % Y_data = vector of experimentally measured values f4, f5, f6, f7 or f8 % corresponding of the X_data % initial_parameters = values of the parameters proposed by the literature % or simply guessed % = [beta, K -> (K)/(coef), n] function output = act_pProm(parameters, X_data) for k = 1:length(X_data) output(k) = parameters(1)*hill(X_data(k), parameters(2), parameters(3)); end end options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4); % options for the function lsqcurvefit optimal_parameters = lsqcurvefit( @(parameters, X_data) act_pProm(parameters, X_data),... initial_parameters, X_data, Y_data, options ); % search for the fittest parameters, between 1/10 and 10 times the initial % parameters end