Team:Paris/Modeling/More f2 Algo
From 2008.igem.org
(Difference between revisions)
(→Inv_2) |
(→find_2) |
||
(2 intermediate revisions not shown) | |||
Line 16: | Line 16: | ||
== find_ƒ2 == | == find_ƒ2 == | ||
- | + | <html><pre class="codeinput"> | |
+ | <span class="keyword">function</span> optimal_parameters = find_f2(X_data, Y_data, initial_parameters) | ||
+ | <span class="comment">% gives the 'best parameters' involved in f2 by least-square optimisation | ||
+ | </span> | ||
+ | <span class="comment">% X_data = vector of given values of a [arab]i (experimentally | ||
+ | </span><span class="comment">% controled) | ||
+ | </span><span class="comment">% Y_data = vector of experimentally measured values f2 corresponding of | ||
+ | </span><span class="comment">% the X_data | ||
+ | </span><span class="comment">% initial_parameters = values of the parameters proposed by the literature | ||
+ | </span><span class="comment">% or simply guessed | ||
+ | </span><span class="comment">% = [betabad, (Kbad -> (gamma.Kbad)/(const.expr(pBad))), nbad, Kara, nara] | ||
+ | </span> | ||
+ | <span class="keyword">function</span> output = expr_pBad(parameters, X_data) | ||
+ | <span class="keyword">for</span> k = 1:length(X_data) | ||
+ | output(k) = parameters(1) * ( hill( ... | ||
+ | (hill(X_data(k), parameters(4), parameters(5))), parameters(2), parameters(3)) ); | ||
+ | <span class="keyword">end</span> | ||
+ | <span class="keyword">end</span> | ||
+ | |||
+ | options=optimset(<span class="string">'LevenbergMarquardt'</span>,<span class="string">'on'</span>,<span class="string">'TolX'</span>,1e-10,<span class="string">'MaxFunEvals'</span>,1e10,<span class="string">'TolFun'</span>,1e-10,<span class="string">'MaxIter'</span>,1e4); | ||
+ | <span class="comment">% options for the function lsqcurvefit | ||
+ | </span> | ||
+ | optimal_parameters = lsqcurvefit( @(parameters, X_data) expr_pBad(parameters, X_data), ... | ||
+ | initial_parameters, X_data, Y_data, 1/10*initial_parameters, 10*initial_parameters, options ); | ||
+ | <span class="comment">% search for the fittest parameters, between 1/10 and 10 times the initial | ||
+ | </span><span class="comment">% parameters | ||
+ | </span><span class="keyword">end</span> | ||
+ | </pre></html> | ||
== Inv_ƒ2 == | == Inv_ƒ2 == | ||
- | + | <html><pre class="codeinput"> | |
+ | <span class="keyword">function</span> quant_ara = Inv_f2(inducer_quantity) | ||
+ | <span class="comment">% gives the quantity of [ara]i needed to get inducer_quantity of a protein | ||
+ | </span><span class="comment">% throught a gene behind pBad | ||
+ | </span> | ||
+ | <span class="keyword">function</span> equa = F(x) | ||
+ | equa = f2( x ) - inducer_quantity; | ||
+ | <span class="keyword">end</span> | ||
+ | |||
+ | options=optimset(<span class="string">'LevenbergMarquardt'</span>,<span class="string">'on'</span>,<span class="string">'TolX'</span>,1e-10,<span class="string">'MaxFunEvals'</span>,1e10,<span class="string">'TolFun'</span>,1e-10,<span class="string">'MaxIter'</span>,1e4); | ||
+ | |||
+ | quant_ara = fsolve(F,1,options); | ||
+ | |||
+ | <span class="keyword">end</span> | ||
+ | </pre></html> | ||
</div> | </div> |
Latest revision as of 03:48, 30 October 2008
find_2
function optimal_parameters = find_f2(X_data, Y_data, initial_parameters) % gives the 'best parameters' involved in f2 by least-square optimisation % X_data = vector of given values of a [arab]i (experimentally % controled) % Y_data = vector of experimentally measured values f2 corresponding of % the X_data % initial_parameters = values of the parameters proposed by the literature % or simply guessed % = [betabad, (Kbad -> (gamma.Kbad)/(const.expr(pBad))), nbad, Kara, nara] function output = expr_pBad(parameters, X_data) for k = 1:length(X_data) output(k) = parameters(1) * ( hill( ... (hill(X_data(k), parameters(4), parameters(5))), parameters(2), parameters(3)) ); end end options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4); % options for the function lsqcurvefit optimal_parameters = lsqcurvefit( @(parameters, X_data) expr_pBad(parameters, X_data), ... initial_parameters, X_data, Y_data, 1/10*initial_parameters, 10*initial_parameters, options ); % search for the fittest parameters, between 1/10 and 10 times the initial % parameters end
Inv_2
function quant_ara = Inv_f2(inducer_quantity) % gives the quantity of [ara]i needed to get inducer_quantity of a protein % throught a gene behind pBad function equa = F(x) equa = f2( x ) - inducer_quantity; end options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4); quant_ara = fsolve(F,1,options); end