Team:Paris/Modeling/Others prog
From 2008.igem.org
(Difference between revisions)
(→Global) |
(→Global) |
||
Line 82: | Line 82: | ||
<span class="comment">% A program must load all parameters ! | <span class="comment">% A program must load all parameters ! | ||
</span> | </span> | ||
- | if prom2 == <span class="string">'pFlgA'</span> | + | <span class="keyword">if</span> prom2 == <span class="string">'pFlgA'</span> |
F = @f6 | F = @f6 | ||
- | elseif prom2 == <span class="string">'pFlgA'</span> | + | <span class="keyword">elseif</span> prom2 == <span class="string">'pFlgA'</span> |
F = @f7 | F = @f7 | ||
<span class="keyword">end</span> | <span class="keyword">end</span> | ||
- | else error(<span class="string">'Wrong promoter for FP2 '</span>) | + | <span class="keyword">else</span> error(<span class="string">'Wrong promoter for FP2 '</span>) |
<span class="keyword">end</span> | <span class="keyword">end</span> | ||
Revision as of 05:03, 30 October 2008
complexes
function complexes = complexes(x,y,K,n) % amount of complexes n*x + y = x_-_y in function of x, y % x, y = initial amounts of binding molecules % K = dissociation constant % n = stoechiometric coefficient of x syms z; % to treat z as a symbolic variable Eqn = ( ( x - n*z )^n )*( y - z ) - K*z; % to define the equation in whose % the amount of complexes is a root S = eval(solve( Eqn, 'z' )); % the vector of the roots Index = find ((0 < S) & (n*S < x) & (S < y) & (imag(S) == 0)); % determine % which % root is % acceptable complexes = S(Index(1)); % the result end
hill
function compl = hill(x,K,n) % complexation nx + Y = x_-_Y when x is in large excess : % gives the ratio (x_-_Y)/(Ytotal) in function of x % x = molecule that binds to Y % K^n = dissociation constant % n = stoechiometric coefficient of x ; also known as 'cooperativity' compl = x^n/(K^n + x^n); end
Global
function labo=Core_Sytem_Simulation (t, init, prom1, prom2, retro) % Simulation of our Core_System % prom1 = 'pTet' or 'pFlhDC' % prom2 = 'pFlgA' or 'pFlgB' % retro = 'EnvZ' or 'OmpR' or quantity of aTc % t = discret time scale % init = vector of the initial state % [FlhDC; % FliA; % FP1; % FP2; % FP3; % TetR / OmpR / EnvZ] regards to the studied version global gamma beta16 K13 n13 K12 n12 K15 n15 beta17 K6 n6 ... beta22 beta18 K1 n1 beta23 K7 n7 beta24 K2 n2 ... beta25 K8 n8 gamma37 beta26 K3 n3 beta27 K9 n9 ... gamma38 beta28 K4 n4 beta29 K10 n10 beta30 K5 n5 ... beta31 K11 n11 gamma39 EnvZ_b OmpR_b K14 n14; % A program must load all parameters ! if prom2 == 'pFlgA' F = @f6 elseif prom2 == 'pFlgA' F = @f7 end else error('Wrong promoter for FP2 ') end if prom1 == 'pTet' try aTc = eval(retro) catch error('Wrong aTc Value') end function ydot = deriv(t,y) % dy/dt % pTet : y(6) = TetR ; retro = aTc ydot = [f1(y(6), aTc); f4(y(1), y(2)); f5(y(1), y(2)) - gamma36; F(y(1), y(2)) - gamma37; f8(y(1), y(2)) - gamma38; f8(y(1), y(2));] - gamma*ones(6,1) end elseif prom1 == 'pFlhDC' if retro == 'OmpR' function ydot = deriv(t,y) % dy/dt % pFlhDC : y(6) = OmpR ydot = [f3(y(2), y(6)); f4(y(1), y(2)); f5(y(1), y(2)) - gamma36; F(y(1), y(2)) - gamma37; f8(y(1), y(2)) - gamma38; f8(y(1), y(2));] - gamma*ones(6,1) end elseif retro == 'EnvZ' function ydot = deriv(t,y) % dy/dt % pFlhDC : y(6) = EnvZ ydot = [f3bis(y(6), y(2)); f4(y(1), y(2)); f5(y(1), y(2)) - gamma36; F(y(1), y(2)) - gamma37; f8(y(1), y(2)) - gamma38; f8(y(1), y(2));] - gamma*ones(6,1) end else error('gene for negative feed-back') end else error('Wrong promoter for flhDC') end end [t,labo]=ode45(deriv,t,init); % The 'full modularity' of this Approach allow other variations, % like changing the place of the negative feed-back % (changing f8 by f7, f6, f5)...