Team:KULeuven/Project
From 2008.igem.org
(→Our project) |
(→Our project) |
||
Line 112: | Line 112: | ||
Our abstract | Our abstract | ||
- | A first idea: cancer treatment with genetically modified blood cells | + | ==A first idea: cancer treatment with genetically modified blood cells== |
As cancer cells need a lot of energy to replicate themselves, they should be well provided with blood. Therefore, blood cells could be the right choice for in situ treatment of cancer. First, we should immobilize these blood cells on the cancer cells. Subsequently, these blood cells should secrete specific agents that reduce the activity of the cancer cells. (These 2 steps may come in handy if we want to split up in 2 subgroups) | As cancer cells need a lot of energy to replicate themselves, they should be well provided with blood. Therefore, blood cells could be the right choice for in situ treatment of cancer. First, we should immobilize these blood cells on the cancer cells. Subsequently, these blood cells should secrete specific agents that reduce the activity of the cancer cells. (These 2 steps may come in handy if we want to split up in 2 subgroups) |
Revision as of 07:07, 23 May 2008
Home | The Team | Road Map | The Project | Parts Submitted to the Registry | Modeling | Notebook |
---|
Contents |
Project brainstorm
Favourite previous iGEM projects
Maarten Breckpot
Nathalie Busschaert
Jonas Demeulemeester
- [http://parts.mit.edu/igem07/index.php/Ljubljana Virotrap Ljubljana 2007]
- [http://parts.mit.edu/igem07/index.php/Princeton RNAi enhanced logic circuit Princeton 2007]
- Other nice parts/devices:
- Caltech: Riboswitch design for targeted cell death/molecular sensor
- Cambridge: Inducible bigger pore protein for E.coli
- Harvard: Quorum-sensing & targeting!
- Melbourne: Red/blue light responsive system through chimeric photoreceptors-kinases
- Peking U: λ-based bistable switch = very powerful
- UCSF: compartmentalization! Rewired MAPK cascade signaling through scaffolds ≅ circuit board
Andim Doldurucu
Jan Mertens
Benjamien Moeyaert
- [http://openwetware.org/wiki/IGEM:Harvard/2006/DNA_nanostructures Harvard 20006: nanostructured DNA containers]
- [http://parts.mit.edu/igem07/index.php/Berkeley_UC Bactoblood]
Stefanie Roberfroid
- [http://parts.mit.edu/igem07/index.php/Cambridge Bacteria Online]
- [http://parts.mit.edu/igem07/index.php/Berkeley_UC Bactoblood]
- [http://parts.mit.edu/igem07/index.php/Princeton RNAi enhanced logic circuit]
- some other nice ideas
- [http://parts.mit.edu/igem07/index.php/Edinburgh Self-flavouring yoghurt]
- Detection of metals: [http://parts.mit.edu/igem07/index.php/Brown Lead], [http://parts.mit.edu/igem07/index.php/Saint_Petersburg Copper]
Hanne Tytgat
- [http://parts.mit.edu/igem07/index.php/Berkeley_UC Bactoblood]
- [http://parts.mit.edu/igem07/index.php/MIT Sensing & removing Hg ions - MIT 2007]
- [http://parts.mit.edu/igem07/index.php/Imperial/Infector_Detector/Introduction Infector detector]
Elke Van Assche
- [http://parts.mit.edu/wiki/index.php/MIT_2006 Eau d'E.coli MIT 2006]
- [http://parts.mit.edu/igem07/index.php/Berkeley_UC Bactoblood Berkeley UC 2007]
- [http://parts.mit.edu/igem07/index.php/Princeton RNAi enhanced logic circuit Princeton 2007]
Nick Van Damme
- [http://parts.mit.edu/igem07/index.php/Davidson_Missouri_W Bacterial Computer]
--> idea: solve a nice mathematical problem
- several electronical/biological components to build an entire complex combinational logic system
- [http://parts.mit.edu/igem07/index.php/USTC Extensible Logic Circuit in Bacteria]: both components and linking
- [http://parts.mit.edu/igem07/index.php/Valencia Comparator]
- [http://parts.mit.edu/igem07/index.php/Bologna Schmitt trigger]
--> idea: build an integrator to solve your own ODE's
Antoine Vandermeersch
- [http://parts2.mit.edu/wiki/index.php/University_of_Texas_2006 Texas 2006: Edge Detector]
- [http://parts.mit.edu/igem07/index.php/Rice/Project_B:_Quorumtaxis Rice 2007: Quorumtaxis]
- [http://parts.mit.edu/igem07/index.php/Berkeley_LBL Berkeley LBL 2007: Solar Bacter]
Dries Vercruysse
Sigrid De Keersmaecker
- [http://parts.mit.edu/igem07/index.php/MIT Sensing & removing Hg ions - MIT 2007]
- [http://parts.mit.edu/igem07/index.php/Edinburgh Self-flavouring yoghurt - Edinburgh 2007]
- [http://parts.mit.edu/igem07/index.php/Missouri_Miners Biological Timer - Missouri Miners 2007]
- [http://parts.mit.edu/igem07/index.php/Ljubljana Virotrap - Ljubljana 2007]
- [http://parts.mit.edu/igem07/index.php/Taipei/Taipei GlucOperon - Taipei 2007]
- [http://parts.mit.edu/igem07/index.php/Berkeley_LBL Solar Bacter - Berkeley_LBL 2007]
- [http://parts.mit.edu/igem07/index.php/Berkeley_UC Bactoblood - Berkeley_UC 2007]
iGEM judging tracks
- Foundational Research - basic science and engineering research
- Information Processing - genetically encoded control, logic, and memory
- Energy - biological fuels, feedstocks, and other energy projects
- Environment- sensing bioremediation of environmental state
- Health & Medicine - applied projects with the goal of directly improving the human condition
Other
[http://openwetware.org/wiki/IGEM:Idea_exchange Idea exchange - iGEM ideas posted by other teams]
Our project
Our abstract
A first idea: cancer treatment with genetically modified blood cells
As cancer cells need a lot of energy to replicate themselves, they should be well provided with blood. Therefore, blood cells could be the right choice for in situ treatment of cancer. First, we should immobilize these blood cells on the cancer cells. Subsequently, these blood cells should secrete specific agents that reduce the activity of the cancer cells. (These 2 steps may come in handy if we want to split up in 2 subgroups)