|
|
Line 1: |
Line 1: |
- | <html>
| + | Design |
- | <style>
| + | |
- | body{
| + | |
- | background-color: black;
| + | |
- | }
| + | |
- | #content{
| + | |
- | padding:0px;
| + | |
- | width:975px;
| + | |
- | }
| + | |
- | table{
| + | |
- | background-color: transparent;
| + | |
- | }
| + | |
- | p
| + | |
- | {
| + | |
- | font-family: Calibri;
| + | |
- | font-size: 13px;
| + | |
- | }
| + | |
- | p.special:first-letter
| + | |
- | {
| + | |
- | color:#990000;
| + | |
- | font-size:x-large;
| + | |
- | }
| + | |
- | h1
| + | |
- | {
| + | |
- | font-family: Copperplate Gothic Bold;
| + | |
- | font-size: 200%;
| + | |
- | color: #993300;
| + | |
- | }
| + | |
- | h3
| + | |
- | {
| + | |
- | font-family: Copperplate Gothic Bold;
| + | |
- | font-size: 150%;
| + | |
- | color: #993300;
| + | |
- | }
| + | |
- | h2
| + | |
- | {
| + | |
- | font-family: Verdana;
| + | |
- | font-size: 130%;
| + | |
- | color: #666666;
| + | |
- | background: #FFFFFF;
| + | |
- | }
| + | |
- | #main
| + | |
- | {
| + | |
- | width:975px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/1/19/Bg_new.jpg);
| + | |
- | float:left;
| + | |
- | }
| + | |
- | #up1
| + | |
- | {
| + | |
- | width:975px;
| + | |
- | height:25px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/d/d7/Up1.gif);
| + | |
- | float:left;
| + | |
- | }
| + | |
- | #down1
| + | |
- | {
| + | |
- | width:975px;
| + | |
- | float:left;
| + | |
- | }
| + | |
- | #down1left
| + | |
- | {
| + | |
- | width:230px;
| + | |
- | float:left;
| + | |
- | }
| + | |
- | #logo
| + | |
- | {
| + | |
- | width:230px;
| + | |
- | height:150px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/d/d4/Logo.jpg);
| + | |
- | }
| + | |
- | #menu
| + | |
- | {
| + | |
- | width:230px;
| + | |
- | height:600px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/8/8b/Leftside.jpg);
| + | |
- | }
| + | |
- | #left_extend
| + | |
- | {
| + | |
- | width:230px;
| + | |
| | | |
- | background-image:url(https://static.igem.org/mediawiki/2008/e/ef/Leftext.jpg);
| + | Our Aim |
- | float:left;
| + | |
- | }
| + | |
- | #down1right
| + | |
- | {
| + | |
- | width:745px;
| + | |
- | float:left;
| + | |
- | }
| + | |
- | #rightmain
| + | |
- | {
| + | |
- | width:705px;
| + | |
- | float:left;
| + | |
- | }
| + | |
- | #rightside
| + | |
- | {
| + | |
- | width:40px;
| + | |
- | height:700px;
| + | |
- | float:right;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/7/7e/Rightside.jpg);
| + | |
- | }
| + | |
- | #rightsidepic
| + | |
- | {
| + | |
- | width: 40px;
| + | |
- | height: 746px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/7/7e/Rightside.jpg);
| + | |
- | }
| + | |
- | #right_extend
| + | |
- | {
| + | |
- | width:40px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/6/6b/Rightext.jpg);
| + | |
- | }
| + | |
- | #preheader
| + | |
- | {
| + | |
- | width:705px;
| + | |
- | height:65px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/4/4e/Up2.jpg);
| + | |
- | float:left;
| + | |
- | }
| + | |
- | #header
| + | |
- | {
| + | |
- | width:705px;
| + | |
- | height:59px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/5/5e/Header.jpg);
| + | |
- | float:left;
| + | |
- | }
| + | |
- | #content1
| + | |
- | {
| + | |
- | width:705px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/3/38/Contentbg.jpg);
| + | |
- | float: left;
| + | |
- | }
| + | |
- | #footer1
| + | |
- | {
| + | |
- | width:705px;
| + | |
- | height:59px;
| + | |
- | background-image:url(https://static.igem.org/mediawiki/2008/e/e9/Footer.jpg);
| + | |
- | float:left;
| + | |
- | }
| + | |
- | </style>
| + | |
- | <style>
| + | |
- | <!--
| + | |
- | a:link
| + | |
- | {
| + | |
- | color:#3366CC;
| + | |
- | text-decoration:none
| + | |
- | }
| + | |
- | a:visited
| + | |
- | {
| + | |
- | color:#FF6600;
| + | |
- | text-decoration:none
| + | |
- | }
| + | |
- | a:hover
| + | |
- | {
| + | |
- | color:#66CCFF;text-decoration:underline
| + | |
- | }
| + | |
- | -->
| + | |
- | </style>
| + | |
- | <div id="main">
| + | |
- | <div id="up1">
| + | |
- | <table width="100%" border="0">
| + | |
- | <tr>
| + | |
- | <th width="61%" scope="row"> </th>
| + | |
- | <td width="39%"><span class="headline"><a href="http://www.hku.hk">The University of Hong Kong</a> | <a href="http://www.hku.hk/facmed/">Li Ka Shing Faculty of Medicine</a></span></td>
| + | |
- | </tr>
| + | |
- | </table>
| + | |
- | </div>
| + | |
- | <div id="down1">
| + | |
- |
| + | |
- | <div id="down1left">
| + | |
- | <div id="logo"></div>
| + | |
- | <div id="menu">
| + | |
- | <table width="100%" border="0">
| + | |
- | </table>
| + | |
- | <table width="100%" border="0">
| + | |
| | | |
- | <tr>
| + | Chassis selection |
- | <th width="7%" height="335" scope="row"> </th>
| + | |
- | <td width="88%"><table width="100%" border="0">
| + | Genetic Circuit Design |
- | <tr>
| + | |
- | <th width="5%" scope="row"> </th>
| + | Plasmids and strains |
- | <td width="90%"><a href="/Team:iHKU/home"><img src="/wiki/images/4/44/Button_home.jpg" width="200" height="25" /></a></td>
| + | |
- | <td width="5%"> </td>
| + | |
- | </tr>
| + | |
- | <tr>
| + | |
- | <th scope="row"> </th>
| + | |
- | <td><a href="/Team:iHKU/team"><img src="/wiki/images/9/9f/Button_team.jpg" width="200" height="25" /></a></td>
| + | Our Aim |
- | <td> </td>
| + | |
- | </tr>
| + | We endeavor our strains to grow into patterns by arranging themselves in a synchronous, self-organised manner, “just as in organisms in nature which all are able to develop shapes and patterns.” Implementing such idea on bacteria sheds light to a mechanism involving cell-cell communication that would produce a key response, predominately a respond affecting cell motility. The characteristics of the response logically should be critical towards the formation overall pattern. |
- | <tr>
| + | |
- | <th scope="row"> </th>
| + | [Back to Top] |
- | <td><a href="/Team:iHKU/design"><img src="/wiki/images/1/12/Button_design.jpg" width="200" height="25" /></a></td>
| + | |
- | <td> </td>
| + | Chassis selection |
- | </tr>
| + | |
- | <tr>
| + | Past chemotaxis studies have provided the molecular basis of cellular motility regulation, Escherichia coli and Bacillus subtilis are notably the well-understood strains which are ideal to be the chassis of our designed genetic circuit. We chose E.coli as our chassis for the project reasoning that cell-cell communications will require the use of a signaling molecule, which are often density related. E.coli is known to be less motile than Bacillus in terms of speed, thus would ease the accumulation of the signaling molecule. We hope the subsequent pattern generated by using E.coli as chassis would be finer and more interesting. |
- | <th scope="row"> </th>
| + | |
- | <td><a href="/Team:iHKU/modeling"><img src="/wiki/images/9/9f/Button_model.jpg" width="200" height="25" /></a></td>
| + | [Back to Top] |
- | <td> </td>
| + | |
- | </tr>
| + | |
- | <tr>
| + | |
- | <th scope="row"> </th>
| + | Genetic Circuit Design |
- | <td><a href="/Team:iHKU/result"><img src="/wiki/images/c/cc/Button_result.jpg" width="200" height="25" /></a></td>
| + | |
- | <td> </td>
| + | An On-Off motility design is desired as the response to cell-cell communication. Based on the pioneer work (Topp & Gallivan 2006) shows the motility can be abolished by knocking out the cheZgene, and can be restored by subsequent re-introduction of the cheZ gene under a controllable promoter back into the host. |
- | </tr>
| + | We designed two DNA constructs whose cheZ expression level would be sensitive to the concentration of AHL (Acetyl homoserine lactone). One would become motile in the presence of AHL, while the other one be become immotile under the same condition. Since concentration of AHL is proportional to cell density, the motility of our strains would be dependent on local cell density. |
- | <tr>
| + | |
- | <th scope="row"> </th>
| + | |
- | <td><a href="/Team:iHKU/software"><img src="/wiki/images/7/70/Button_software.jpg" width="200" height="25" /></a></td>
| + | |
- | <td> </td>
| + | |
- | </tr>
| + | |
- | <tr>
| + | |
- | <th scope="row"> </th>
| + | |
- | <td><a href="/Team:iHKU/device"><img src="/wiki/images/6/6c/Button_devices.jpg" width="200" height="25" /></a></td>
| + | Predicted Pattern: |
- | <td> </td>
| + | |
- | </tr>
| + | |
- | <tr>
| + | |
- | <th scope="row"> </th>
| + | |
- | <td><a href="/Team:iHKU/biobrick"><img src="/wiki/images/f/f0/Button_biobrick.jpg" width="200" height="25" /></a></td>
| + | |
- | <td> </td>
| + | [Back to Top] |
- | </tr>
| + | |
- | <tr>
| + | Plasmids and strains |
- | <th scope="row"> </th>
| + | |
- | <td><a href="/Team:iHKU/protocol"><img src="/wiki/images/f/f2/Button_protocol.jpg" width="200" height="25" /></a></td>
| + | |
- | <td> </td>
| + | |
- | </tr>
| + | |
- | <tr>
| + | |
- | <th scope="row"> </th>
| + | |
- | <td> </td>
| + | |
- | <td> </td>
| + | |
- | </tr>
| + | |
- | </table>
| + | |
- | <p class="style15"> </p>
| + | |
- | </td>
| + | |
- | <td width="5%"> </td>
| + | |
- | </tr>
| + | |
- | <tr>
| + | |
- | <th scope="row"> </th>
| + | |
- | <td> </td>
| + | |
- | <td> </td>
| + | |
- | </tr>
| + | |
- | </table>
| + | |
- | </div>
| + | |
- |
| + | |
- | </div>
| + | |
- | <div id="down1right">
| + | |
- | <div id="rightmain">
| + | |
- | <div id="preheader"></div>
| + | |
- | <div id="header"></div>
| + | |
- | <div id="content1">
| + | |
- |
| + | |
- | <table width="100%" border="0">
| + | |
- | <tr>
| + | |
- | <th width="10%"> </th>
| + | |
- | <td width="80%" align="left"><h1 class="style7">Design</h1>
| + | |
- | <ul>
| + | |
- | <li class="style18"><a href="#1">Our Aim</a></u></li>
| + | |
- | <li class="style18"><a href="#2">Chassis selection</a></li>
| + | |
- | <li class="style18"><a href="#3">Genetic Circuit Design</a></li>
| + | |
- | <li class="style18"><a href="#4">Plasmids and strains</a></li>
| + | |
- | </ul>
| + | |
- | <h3 class="style7"> </h3>
| + | |
- | <h3 class="style7"><strong><a name="1" id="1"></a></strong>Our Aim</h3>
| + | |
- | <p class="special">We endeavor our strains to grow into patterns by arranging themselves in a synchronous, self-organised manner, “just as in organisms in nature which all are able to develop shapes and patterns.” Implementing such idea on bacteria sheds light to a mechanism involving cell-cell communication that would produce a key response, predominately a respond affecting cell motility. The characteristics of the response logically should be critical towards the formation overall pattern. </p>
| + | |
- | <p align="right"><a href="#top">[Back to Top]</a></p>
| + | |
- | <h3><strong><a name="2" id="2"></a>Chassis selection</strong></h3>
| + | |
- | <p class="special">Past chemotaxis studies have provided the molecular basis of cellular motility regulation, <em>Escherichia coli</em> and Bacillus subtilis are notably the well-understood strains which are ideal to be the chassis of our designed genetic circuit. We chose <em>E.coli</em> as our chassis for the project reasoning that cell-cell communications will require the use of a signaling molecule, which are often density related. <em>E.coli</em> is known to be less motile than <em>Bacillus</em> in terms of speed, thus would ease the accumulation of the signaling molecule. We hope the subsequent pattern generated by using <em>E.coli</em> as chassis would be finer and more interesting.</p>
| + | |
- | <p align="right"><a href="#top">[Back to Top]</a></p>
| + | |
- | <p></p>
| + | |
- | <h3><strong><a name="3" id="3"></a>Genetic Circuit Design</strong></h3>
| + | |
- | <p class="special">An On-Off motility design is desired as the response to cell-cell communication. Based on the pioneer work (Topp & Gallivan 2006) shows the motility can be abolished by knocking out the <strong><em>cheZ</em></strong>gene, and can be restored by subsequent re-introduction of the <em>cheZ</em> gene under a controllable promoter back into the host.<br />
| + | |
- | We designed two DNA constructs whose cheZ expression level would be sensitive to the concentration of AHL (Acetyl homoserine lactone). One would become <strong>motile</strong> in the presence of AHL, while the other one be become <strong>immotile </strong>under the same condition. Since concentration of AHL is proportional to <strong>cell density</strong>, the motility of our strains would be dependent on local cell density.</p> | + | |
- | <p align="center"><img src="/wiki/images/4/4f/Lux.gif" width="565" height="175" /></p>
| + | |
- | <p align="center"><img src="/wiki/images/4/4a/LD.gif" width="565" height="175" /></p>
| + | |
- | <p align="center"> </p>
| + | |
- | <p>Predicted Pattern:</p>
| + | |
- | <h1 align="center"><img src="/wiki/images/thumb/1/1e/Design_pic3.png/800px-Design_pic3.png" width="465" height="230" /></h1>
| + | |
- | <p align="center"> </p>
| + | |
- | <p align="right"><a href="#top">[Back to Top]</a></p>
| + | |
- | <h3><strong><a name="4" id="4"></a>Plasmids and strains</strong></h3>
| + | |
- | </td>
| + | |
- | <td width="10%"> </td>
| + | |
- | </tr>
| + | |
- | </table>
| + | |
- | <table width="100%" border="0">
| + | |
- | <tr>
| + | |
- | <th width="2%" scope="row"> </th>
| + | |
- | <td width="95%"><div align="center">
| + | |
- | <p><img src="/wiki/images/5/5d/Design_tab1.png" width="538" height="551" /></br>
| + | |
- | <img src="/wiki/images/7/7d/Design_tab2.png" width="538" height="430" /></p>
| + | |
- | <p align="right"><a href="#top">[Back to Top] </br></a></p>
| + | |
- | </div></td>
| + | |
- | </tr>
| + | |
- | </table>
| + | |
- | </div>
| + | |
- |
| + | |
- | <div id="footer1"></div>
| + | |
- | </div>
| + | |
- | <div id="rightside">
| + | |
- |
| + | |
- | </div>
| + | |
- | </div>
| + | |
- | </div>
| + | |
- | </div>
| + | |
- | </html>
| + | |
- | <html>
| + | |
We endeavor our strains to grow into patterns by arranging themselves in a synchronous, self-organised manner, “just as in organisms in nature which all are able to develop shapes and patterns.” Implementing such idea on bacteria sheds light to a mechanism involving cell-cell communication that would produce a key response, predominately a respond affecting cell motility. The characteristics of the response logically should be critical towards the formation overall pattern.
Past chemotaxis studies have provided the molecular basis of cellular motility regulation, Escherichia coli and Bacillus subtilis are notably the well-understood strains which are ideal to be the chassis of our designed genetic circuit. We chose E.coli as our chassis for the project reasoning that cell-cell communications will require the use of a signaling molecule, which are often density related. E.coli is known to be less motile than Bacillus in terms of speed, thus would ease the accumulation of the signaling molecule. We hope the subsequent pattern generated by using E.coli as chassis would be finer and more interesting.
An On-Off motility design is desired as the response to cell-cell communication. Based on the pioneer work (Topp & Gallivan 2006) shows the motility can be abolished by knocking out the cheZgene, and can be restored by subsequent re-introduction of the cheZ gene under a controllable promoter back into the host.
We designed two DNA constructs whose cheZ expression level would be sensitive to the concentration of AHL (Acetyl homoserine lactone). One would become motile in the presence of AHL, while the other one be become immotile under the same condition. Since concentration of AHL is proportional to cell density, the motility of our strains would be dependent on local cell density.