Team:Paris/Modeling/More From2Ode Math
From 2008.igem.org
(Difference between revisions)
(→Hill Functions) |
|||
Line 7: | Line 7: | ||
The problem is the following : for given values of molecules A and B at initial state, what is the final state if A and B can bind together ? With the answer at this question, we would be able to treat separately each step of our system as an "independant module", taking as input values of A<sub>i</sub> and B<sub>i</sub> and giving as output values of A<sub>eq</sub>, B<sub>eq</sub> and Complex<sub>eq</sub>. By doing so, we are doing the hypothesis of '''quasi steady-state''' because it implies that the complexations reach immediatly their equilibrium. The kinetical behaviour of the final model is nevertheless taking into account, because the reactions of productions are considered slower, and the characterization would give us their speed, regards to the ratio with the (known) value of the degradation γ | The problem is the following : for given values of molecules A and B at initial state, what is the final state if A and B can bind together ? With the answer at this question, we would be able to treat separately each step of our system as an "independant module", taking as input values of A<sub>i</sub> and B<sub>i</sub> and giving as output values of A<sub>eq</sub>, B<sub>eq</sub> and Complex<sub>eq</sub>. By doing so, we are doing the hypothesis of '''quasi steady-state''' because it implies that the complexations reach immediatly their equilibrium. The kinetical behaviour of the final model is nevertheless taking into account, because the reactions of productions are considered slower, and the characterization would give us their speed, regards to the ratio with the (known) value of the degradation γ | ||
- | == | + | ==Complexation Reaction== |
The first hypothesis is that a complexation reaction is fully determined by the following : | The first hypothesis is that a complexation reaction is fully determined by the following : |
Revision as of 03:42, 27 October 2008