Team:Rice University

From 2008.igem.org

(Difference between revisions)
Line 10: Line 10:
[[Image:ProjectTitle.jpg]]<BR>
[[Image:ProjectTitle.jpg]]<BR>
[[Team:Rice_University/OUR TEAM|OUR TEAM]] ::: [[Team:Rice_University|SUMMARY]] :::  [[Team:Rice_University/BACKGROUND|BACKGROUND]] :::   
[[Team:Rice_University/OUR TEAM|OUR TEAM]] ::: [[Team:Rice_University|SUMMARY]] :::  [[Team:Rice_University/BACKGROUND|BACKGROUND]] :::   
-
[[Team:Rice_University/CONSTRUCTS|CONSTRUCTS]] ::: [[Team:Rice_University/STRATEGY|STRATEGY]] :::   [[Team:Rice_University/RESULTS|RESULTS]] :::  [[Team:Rice_University/CONCLUSIONS|ONGOING WORK]]  
+
[[Team:Rice_University/STRATEGY|STRATEGY]] ::: [[Team:Rice_University/CONSTRUCTS|CONSTRUCTS]] :::   [[Team:Rice_University/RESULTS|RESULTS]] :::  [[Team:Rice_University/CONCLUSIONS|ONGOING WORK]]
{| style="color:#1b2c9a;background-color:#FFFFFF;" cellpadding="0" cellspacing="0" border="0" bordercolor="#000" width="100%" align="center"|}
{| style="color:#1b2c9a;background-color:#FFFFFF;" cellpadding="0" cellspacing="0" border="0" bordercolor="#000" width="100%" align="center"|}

Revision as of 01:54, 30 October 2008


justify justify


GradientBar.jpg

ProjectTitle.jpg
OUR TEAM ::: SUMMARY ::: BACKGROUND ::: STRATEGY ::: CONSTRUCTS ::: RESULTS ::: ONGOING WORK

Resveratrol, a phytochemical in plants, has been implicated as a natural product that extends lifespan and prevents cancer, coronary disease and neurodegenerative maladies. Unfortunately, resveratrol is only present at appreciable levels in a small number of foods, such as red wine, peanuts, and blueberries. To create an alternative source for resveratrol consumption, we are introducing a biosynthetic pathway for this compound into a brewing strain of yeast and examining whether this strain can be engineered to produce resveratrol during beer fermentation. Given the high worldwide consumption of beer and the low cost of production, unfiltered beer brewed using our genetically modified yeast should provide a cost-effective source of pharmacologically-active resveratrol. This engineering approach should be useful for cheap biosynthesis of other oxygen-sensitive prophylactics.