Team:Bologna
From 2008.igem.org
Line 51: | Line 51: | ||
|contenuto=[[Image:Circuito2.jpg|280px|right]] | |contenuto=[[Image:Circuito2.jpg|280px|right]] | ||
The aim of this work area is to determine the characteristics of the promoters that form the circuit. In this section are also collected a brief description of our model, all the equations that describe analytically our circuit, the most meaningful graphics and the results of simulations. [[Team:Bologna/Modeling|Enjoy yourself!]] | The aim of this work area is to determine the characteristics of the promoters that form the circuit. In this section are also collected a brief description of our model, all the equations that describe analytically our circuit, the most meaningful graphics and the results of simulations. [[Team:Bologna/Modeling|Enjoy yourself!]] | ||
- | <br> | + | <br><br><br> |
}} | }} | ||
</div> | </div> |
Revision as of 22:49, 29 October 2008
HOME | PROJECT | TEAM | SOFTWARE | MODELING | WET LAB | LAB-BOOK | SUBMITTED PARTS | BIOSAFETY AND PROTOCOLS |
---|
Our project aims to design a bacterial reprogrammable binary memory with genetically engineered E.coli. To engineer bacteria we designed a genetic Flip-Flop (SR Latch) formed by a epigenetic memory and an UV-sensitive trigger. We chose UV to set the memory ON and IPTG to reset it. We designed the circuit by model-based analysis. Core elements of the genetic Flip-Flop are two mutually regulated promoters. Each of them has as an operator sequence downstream a constitutive promoter. Thus, transcriptional strength and repressor binding affinity can be independently fixed. Operators for LacI, TetR, Lambda and LexA repressors were cloned to allow the rational design of regulated promoters that is still lacking in the Registry. A simple experimental procedure was established to characterize the regulated promoter. We expect these parts to be a benefit in many Synthetic Biology applications. Click here for more information...
The rationale underpinning the foundation of the Ecoli.PROM team consisted in the synergistically collaboration of various young students with different curricula. These students, pushed by their common desire for new experiences, decided to participate in this exciting competition to discover a new research field and to expand their interest for synthetic biology. Responding to the call of Professor Silvio Cavalcanti, they constituted the Bologna iGEM team, finally composed of students from Biotechnology, Electronics Engineering and Biomedical Engineering faculties.
Go to the page!
The aim of this work area is to determine the characteristics of the promoters that form the circuit. In this section are also collected a brief description of our model, all the equations that describe analytically our circuit, the most meaningful graphics and the results of simulations. Enjoy yourself!
Into this section you can find the very useful softwares we developed for this competition. The first of them realizes a fluorescence image analysis using two parameters: the bacteria dimensions and the standard deviation and mean fluorescence ratio. The second makes possible to find the registered parts you are searching for in a quick and easy way, to identify their sequence and display parts with similar behaviour. You can also download them from this page.
To obtain regulated promoters we synthesized four libraries of operator sequences, respectively for LacI, TetR, cI and LexA repressor proteins. Here is how we designed the operator libraries, how we isolated single operators and try to clone them in the standard format and how we used operators to tune promoter activation in response to UV induction.So wet!
Aknowledgements
Our Team is funded by:
- [http://www.unibo.it/Portale/default.htm University of Bologna]
- [http://serinar.criad.unibo.it Ser.In.Ar. Cesena]