A. Genetic Engineering and Part Construction
A detailed summary of parts, design considerations, and genetic engineering progress can be accessed at Constructs.
Please visit our Notebook for a summary of labwork, protocols, and overviews of progress.
B. Yeast Transformation
C. HPLC Data
To analyze our beer samples for resveratrol content, be will be using High Performance Liquid Chromatography (HPLC), which will allow us to separate the metabolites produced by the yeast and analyze these compounds by spectrophotometry. By comparing HPLC chromatogram peaks of metabolites produced by our yeast with a resveratrol-only standard, we can identify if resveratrol is being produced, and at what quantities. Below, we show our initial data for HPLC calibration curves using known quantities of resveratrol and p-coumaric acid standards and test chromatograms using extracts from different wine samples.
- HPLC Parameters
- Column: Agilent Eclipse XDB-C18, 5uM (9.4x250mm)
- Mobile Phases:
- (A) 5% acetonitrile / 0.95% acetic acid
- (B) 70% acetonitrile / 0.3% acetic acid
- Linear gradient: A to B over 29 minutes
- Flow rate: 0.9mL/min
- Absorbance monitoring: 290nm
- Sample injection volume: 25 microliters
|
Figure C1. Example HPLC chromatogram of a resveratrol standard.
HPLC: Calibration
HPLC: Fermenation batches
Fermentation
Coming Soon. For a sneak preview, check out the Gallery
|