Team:KULeuven/Model/Reset

From 2008.igem.org

Revision as of 09:42, 26 August 2008 by Nickvd (Talk | contribs)

  dock/undock dropdown  

Logo reset.jpg

Contents

Pulse Generator

Position in the system

The Pulse Generator-subsystem is directly linked to the Filter.

When the filter indicates that the input is zero (there is no desease), the system will (ideally) produce no lactonase. As soon as the output of the filter is one, the subsystem will produce a pulse of lactonase which will be high enough to 'remove' all HSL present in the system and in that way reset the timer.

Describing the system

Pulse Generator BioBrick.jpg

ODE's

Parameters

Parameter values (Pulse Generator)
Name Value Comments Reference
Degradation rates
dRNA_cI 0.00462 s-1
dcI 7.0E-4 s-1 [http://parts.mit.edu/igem07/index.php?title=ETHZ/Parameters link]
dRNA_Lac 0.00231 s-1
dLac 2.888E-4 s-1
dRNA_Ribokey:cI 0.00231 s-1
Dissociation constants
KRibokey:cI 0.00212 kass/kdiss for the Ribokey cI complex
KcI 0.00337 binding cI on cI-Promotor [http://parts.mit.edu/igem07/index.php?title=ETHZ/Parameters link]
Transcription rates
kRNA_cI 0.025 s-1 maximal transcription rate RNA cI (no cI repressor present)
kRNA_Lac 0.025 s-1
Translation rates
kcI 0.167 s-1
kLac 0.167 s-1 RBS is B0032 (efficiency 0.3) [http://partsregistry.org/Part:BBa_B0032 link]
Hill cooperativity
ncI 2.0 [http://parts.mit.edu/igem07/index.php?title=ETHZ/Parameters link]

Models

CellDesigner (SBML file)

Pulse Generator

Matlab

Pulse Generator Matlab.jpg

Problem

Todo!!!

Constant Lactonase Production

Pictogram lactonaseproduction.png

Position in the system

The Constant Lactonase Production-system is directly linked to the Filter.

When the filter indicates that the input is zero (there is no desease), the system will (ideally) produce no lactonase. As soon as the output of the filter is one, the system starts producing lactonase and remains doing this untill the light goes off again. In this way all the HSL-molecules that are present will be 'removed' and the timer is reset.

Describing the system

Modeling Reset.PNG

ODE's

Parameters

Parameter values Constant Lactonase Production
Name Value Comments Reference
Degradation Constants
dlactonase 2.888E-4 s-1
dclosed_mRNA_lactonase 0.0046209812 s-1 [http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=124983&blobtype=pdf link]
dopen_mRNA_lactonase 0.0023104906 s-1 [http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=124983&blobtype=pdf link]
dopen_mRNA_lactonase_complex 0.0023104906 s-1 [http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=124983&blobtype=pdf link]
Transcription Rates
kmRNA_lactonase 0.03 s-1
Translation Rates
klactonase 0.1666667 s-1 RBS is B0032 (efficiency of 0.3)
Equilibrium constants
Keq_1 0.015 closed and open mRNA
Keq_2 0.0212 M closed and key (binded with ribokey) complex mRNA
Association/Dissociation/Reaction Rates
kass 2.12 s-1 closed mRNA lactonase + mRNA Ribokey
kdiss 100 s-1 closed mRNA lactonase + mRNA Ribokey
k 1.5 s-1 open mRNA lactonase
k 100 s-1 closed mRNA lactonase

Models

CellDesigner (SBML file)

LactonaseProduction CellDesigner.png

Matlab (SBML file)

LactonaseProduction Matlab.jpg

Simulation

Remark: up to date with latest version?

The number lactonase genes is held constant during the entire simulation. For the first 15.000 seconds the number of mRNA Ribokey is equal to 0.015 and the number of pT7 molecules to 0.4, then for 15000 s these numbers are set on 6 and 3 respectively (based on the results of the model of the filter) after which they are reduced back to 0.015 and 0.4.
We see that an increase in the number of mRNA Ribokey and pT7(due to an increase in light intensity) will lead to a much higher number of lactonase molecules.

Sim lactonaseproduction 1.png