Team:Chiba/Project

From 2008.igem.org

Revision as of 12:17, 23 October 2008 by Yoshimi (Talk | contribs)

Chiba-U.gif

Home The Team The Project Parts Submitted to the Registry Notebook

Contents

Introduction

E.coli time manager

Chiba-logo.gif

  We control the timing of gene expression by using multiple signaling devices.To this end,we utilize molecules associated with Quorum sensing, a phenomenon that allows bacteria to communicate with each other.Our project uses two classes of bacteria: senders and receivers. Senders produce signaling molecules, and Receivers are activated only after a particular concentration of this molecule is reached.Although different quorum sensing species have slightly different signaling molecules, these molecules are not completely specific to their hosts and cross-species reactivity is observed [http://www3.interscience.wiley.com/journal/119124142/abstract (M.K Winson et al.FEMS Microbiology Letters,1998)].Communication using non-endogenous molecules is less sensitive, andrequires a higher signal concentration to take effect.This results in slower activation of receivers.

Motivation'

Project Design

Controlling the time of a cell-to-cell signaling action

Our project uses two classes of bacteria: senders and receivers.Senders produce signaling molecules, and receivers are activated only after a particular concentration of this molecule is reached.The communication using non-endogenous molecules is less sensitive,and it requires higher signal concentration to take effect.This results in slower activation of receivers.

  • Quorum-Sensing Cross-talk

   AHLs produced by different bacteria differ only in the length of the acyl-chain moiety and substitution at position C-3.([http://partsregistry.org/Part:BBa_F2620:Specificity BBa_F2620:Specificity])

  • LuxR/Plux mutants show
  1. a greater response to 3OC6HSL ([http://authors.library.caltech.edu/5553/ C. H. Collins.et al.Mol.Microbiol.2005.])
  2. a increase in sensitivity to 3OC12HSL ([http://mic.sgmjournals.org/cgi/content/abstract/151/11/3589 B. Koch.et al.Microbiology (2005)]).


About Quorum Sensing

  Quorum sensing is a cell-to-cell signaling action of bacteria. They detect the cell density of the same species and coordinate the expression behavior of their cells. Species of Gram-Negative signaling transfer molecules (so-called autoinducer) is a series of acyl homoserine lactone (AHL). The signals are synthesized from S-adenosylmethionine(SAM) by a synthase protein and once they have reached a threshold concentration,they bound to a transcriptional regulatory protein to induce expression of target genes.

More about Quorum Sensing

  • [http://parts.mit.edu/registry/index.php/Featured_Parts:Cell-Cell-Signaling Cell-Cell-Signaling]
  • [http://www.che.caltech.edu/groups/fha/quorum.html About Quorum sensing]

  

How Our System Works

Experiments

Quorum-Sensing Cross-talk

  • Senders
    • [http://partsregistry.org/Part:BBa_K084007 plac+rbs+LasI]
    • [http://partsregistry.org/Part:BBa_K084008 plac+rbs+RhlI]
    • [http://partsregistry.org/Part:BBa_K084012 plac+rbs+LuxI]
  • Receiver
    • [http://partsregistry.org/Part:BBa_T9002 BBa_T9002 (Express GFP in response to AHL)]

Method

  1. Transform Senders into E.coli strains(JW1908/XL10GOLD) and Receiver into E.coli strain(JW1908).
  2. Inoculated them independently in liquid media. Incubated at 37℃ 12h.
  3. Washed Senders and receiver.
  4. Mix them.
  5. Incubated at 37℃ or 30℃.
  6. Measured intensity of green fluorescence at regular time intervals.

Result

LuxR mutation

Home The Team The Project Parts Submitted to the Registry Notebook