Team:Chiba/Project

From 2008.igem.org

Revision as of 11:17, 29 October 2008 by Maiko (Talk | contribs)

Chiba-U.gif

Home The Team The Project Parts Submitted to the Registry Reference Notebook Acknowledgements

Abstract

E.coli time manager

We are constructing the delay switches to control/ preset the timing of gene expression. Our project uses two classes of bacteria: senders and receivers. Senders produce signaling molecules, and receivers are activated only after a particular concentration of this molecule is reached. The combinatorial use of senders/ receivers allows us to make various ‘switching consortium’ with a variety of preset time.

As signaling molecules, we utilize molecules associated with Quorum sensing, a phenomenon that allows bacteria to communicate with each other. Although different quorum sensing species have slightly different signaling molecules, these molecules are not completely specific to their hosts and cross-species reactivity is observed (1),(2). Communication using non-endogenous molecules is less sensitive than the original, and requires a higher signal concentration to take effect. This results in slower activation of receivers.

Introduction

Fig.1 Project design

VCR systems possess the time-recording function. Microwaves automatically stop heating when the right time comes. Using their presetting functions, we became free either from staying up late watching European succor game, and from worrying about our popcorn burned black while we are yelling to the game videotaped. This way, the timer functions have revolutionized our lifestyle.

We thought the same applies to the biotechnology; we would like to freely implement the 'timer switches” to various biological functions, hopefully independently and in parallel format. These “functions” include sensors, synthesizers, or degraders of bioactive compounds/ materials, transportation and secretion machineries, communications, getting/ sticking together, proliferation and cell death. If successful, we can program much more complex behaviors in cellular systems.

As one of the thousands of possible applications, we are trying to construct temporal imaging system using E. coli 'ink's that differ not in color but the 'timing' of coloration (fig).  Over time, parts of images (or characters) are getting visible one by one, making animated message/ picture. In the end, the last ink get colorized, covering the entire image. Such system should be useful as a sort of secured communication board:  we can convey our message to those who know the exact moment they should take a look. After a while, all the massage is gone.

Project Details

私たちは,2種類のbacteriaからなる Switching consortium によって,水時計型のtime delay装置をつくる(more about [http://en.wikipedia.org/wiki/Water_clock Water clock-wikipedia.en]) 。 まず,Sender細胞が,ゆっくりとシグナルを合成する。それは次第に系に蓄積する。Receiverの応答感度に達した時,Receiverは遺伝子機能を起動するわけである(図説)。合成されたAHLが応答閾値に達するまでの時間を変えることで、遺伝子発現時間を調整することができる。そしてそのtime delay(preset time)は,sender側のmessage蓄積速度と,receiverの応答感度を調節すれば,任意に設定できる。

Signaling System

細胞間コミュニケーションであるクオラムセンシングを利用する。そもそもクオラムセンシングは,自分たちの密度がある閾値が一定値を超えたときに起動するものである(→もっと詳しく)。 Sender:LuxI protein familyがシグナル分子であるAHLを合成する。この分子は細胞膜を自由に通過し,Neighbering cellsにも感知される。 Receiver:常時LuxR proteinを発現し,AHLを監視している。AHL濃度がある値を超えると結合し,Lux promoter下の遺伝子発現をONにする。その応答閾値はLuxRとAHLとの親和性に依存している(文献)。


Delayed switches, four ways:

Fig. System design

1、全体の説明

蓄積したシグナル分子によって遺伝子発現が起こる細胞間コミュニケーションであるクオラムセンシングを利用する。

クオラムセンシングではLuxI protein familyがシグナル分子であるAHLを合成する。

LuxR protein familyはAHLに応答し、Lux promoter下の遺伝子を発現する。

LuxI protein familyによって合成されたAHLを蓄積していく->ある点(応答閾値)まで蓄積すると、遺伝子発現が起こる

合成されたAHLが応答閾値に達するまでの時間を変えることで、遺伝子発現までの時間を調整することができる。

応答閾値までAHLが蓄積すると、GFPを発現する

その蛍光強度によって遺伝子発現を調べる




2、How to control the timing of gene expression

Whole system design Chiba.jpg

Chiba project design Sender.jpg
Signal Molecule Sender Phase


Chiba project design Receiver.jpg
Signal Molecule Receiver Phase


Chiba project design.jpg
Signal Molecule Quencher



Quorum Sensing Cross-talk

クオラムセンシングにおける送受信装置は由来する生物ごとに特有のセットをなしているが、異種の送受信装置同士もCross-talkすることが分かっている。 Cross-talkによるコミュニケーションは感度が鈍いため、Receiverの活性化が遅くなる。


more about Quorum Sensing Cross-talk

Experiments and Result

Signal Molecule Sender Phase

Design

Chiba project design Sender.jpg

Utilize Quorum Sensing Cross-talk 

English:Each species has their own LuxI-type proteins,which synthesize their specific autoinducers,AHLs.AHLs produced by different LuxI-type proteins differ only in the length of the acyl-chain moiety and substitution at position C-3.LuxR,which is original for Vibrio fischeri,is activated by its cognate autoinducer,3OC6HSL.However,LuxR is also activated by non-endogenous molecules,C4HSL,C6HSL,and 3OC12HSL.Activation by non-endogenous molecules requires a higher signal concentration(1),(2).This results in slower activation of receivers,when AHL concentration is increasing.日本語:異なる生物はそれぞれに異なるLuxIタイプのタンパク質を持ち、アシル鎖の長さ、あるいはC-3位の置換基が異なる種類のAHLを合成する。それぞれの生物種のLuxIタイプのタンパク質、それが合成する分子名は以下の表のようである。 (Fig.4).AHLを受け取り応答するLuxRタンパク質はVibrio fischeri由来であり、3OC6HSLに応答する。しかし、他種生物由来のAHLにも応答することが知られており、このとき、より高い濃度のAHLが必要となる(1),(2).AHLがゆっくり溜まっていく時、LuxRは3OC6HSLに対して最も早く応答し、他のAHLに対してはそれよりも遅く応答する。 (冨永)

more about AHL sender phase design

Result

Crosstalk test

Fig. senders crosstalk test.senders strain XL10Gold,Receiver strain JW1908.Reaction temparature was 30°C.All measurements are averages from three replicate cultures with error bars representing standard deviations.Labeling:LuxI,RhlI,LasI means fluorescence induced by AHLs synthesized by LuxI,RhlI,LasI respectively.


  • RhlIとLuxIでは、GFP inductionにかかる時間はほとんど同じであった.
  • LasIは、GFP inductionが他より約2時間遅れた.


(冨永)

more about Sender experiment and result


Signal Molecule Receiver Phase

Chiba project design Receiver.jpg

English:

日本語:AHLを合成するSenderだけではなく、AHLを受け取る側のReceiverを変えれば、その応答時間を変えることができる。そこで私たちは、以下のいくつかの方法を考えた。

  1. 一種類のSender(AHL<--LuxI)に対して、由来生物の異なるレシーバタンパク質でそれを受信する.
  2. レシーバータンパク質であるLuxRに変異を入れることで、AHLに対する応答感度を上下させること.
  3. レシーバーのコピーナンバーを変える.



Quorum-Sensing Crosstalk

Fig.  Crosstalk

クオラムセンシングにおける、レシーバータンパクを変えてクロストークを起こさせる。
センダーを変えたときと同様に、他種生物由来のレシーバーでもAHLに応答することは知られている(1)(2)
本来の組み合わせとは異なるAHLを受け取るレシーバーの応答時間は遅くなり、遺伝子発現が遅くなる。
more about Receiver phase crosstalk

Fig.  Time Delay Test

more about experimental result

Plasmid Copynumber

Fig. copynumber

遺伝子回路を含むプラスミドをもったレシーバーのコピーナンバーを変えることで、応答までの時間を変える
コピーナンバーを変えれば、レシーバーによるLuxRの合成量は変化する
AHLを受け取るLuxRが変わるので応答閾値までの時間が変わるのだ
more about Plasmid Copy number

Fig. Time Delay Test

  • クオラムセンシングに関わる遺伝子のベクタープラスミドのコピーナンバーを少なくすることで、遺伝子発現が遅くなる
  • それと同時に、遺伝子発現の最大値自体も少なくなってしまう

more about experimental result




LuxR mutant (Under construction)

レシーバータンパク質であるLuxRに変異を入れることで応答感度を上下させる(3),(4)

Fig. LuxR mutant


Signal Molecule Quencher

Design

Chiba project design.jpg


  • AHL reporter with aiiA
Express LuxR and aiiA constantly. AiiA degrades
AHL as signaling molecule. Express GFP when
the AHL concentration exceed the capacity of aiiA.
This enables the delay of the activation time of receiver.

more about AiiA Receiver Phase

Fig.  Time Delay Test


more about AiiA Receiver Experiment

Demo Experiments

Demo ~Senders~

一番時差が見られたSender遺伝子のLuxIとLasIをつかってデモ実験を行った。

LuxIおよびLasIの遺伝子がそれぞれ組み込まれた大腸菌(XL10G)と、

LuxRの遺伝子が組み込まれた大腸菌(BW)を液体培養したものを 液量1:1で混ぜて、それらのGFPが発現するのを目視で観測した。


Results

結果は以下の通り。

Team-Chiba-demo-mihon.gif *緑部分:LuxI *赤部分:LasI

Team-Chiba-demo-1.JPG Team-Chiba-demo-2.JPG Team-Chiba-demo-3.JPG 


1枚目の写真は開始点。2枚目はLuxIの部分だけGFPを肉眼(蛍光灯光)で確認。3枚目はLuxIとLasI両方を確認したものです。

(それぞれ0時間、4時間、8時間後の映像。液量が100μLと少ないため、今までの実験(1000μL)での結果よりもGFP発現に時間がかかった。・・・コレ書かない方がいいのかなあ。) --Yoshimi 11:04, 29 October 2008 (UTC)

-->more about Demo experiments detail

Demo ~Receivers~

English:
日本語:
固体培地中にセンダー(LuxI)を混ぜ、固体培地表面にレシーバーのコロニーをN.Cフィルターで移す。 センダーの作るAHLは培地中を移動し、表面のレシーバーがAHLを一定濃度感知すればGFPを発現 する。一種のセンダーに対し、様々な種類のレシーバーを用いることで時間差が生じることを確認する。

用いるレシーバーは・・・

・シグナルを受け取るレシーバーを変える(クロストークの利用):LuxR,LasR,RhlR

・シグナル自体を分解するAiia を利用する

・レシーバーの遺伝子回路を含むプラスミドのコピーナンバーの変化

・レシーバータンパク質であるLuxRに変異を入れる      


・確認の仕方
37℃で培養しているreceiverに時間(30min?)ごとにUVをあててGFPが見えるかチェックする。
香取

Results

--->more Demo experiments detail

Conclusion

シグナル分子を3OC6HSLから3OC12HSLに変更することで、LuxRの応答時間を二時間遅らせることができた.

これらのSender実験とReceiver実験で時間差を作り出すことが出来たものを融合すれば、2時間以上の時間差の効果を期待することが出来る。

さらにミューテーションやポジティブフィードバックループを利用することで、この時差を更に広げることが出来るだろう。

--Yoshimi 11:09, 29 October 2008 (UTC)

Future Work

references

  1. [http://www3.interscience.wiley.com/journal/119124142/abstract M.K Winson et al.:Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing.FEMS Microbiology Letters 163 (1998) 185-192]
  2. [http://partsregistry.org/Part:BBa_F2620:Specificity BBa_F2620:Specificity]
  3. [http://authors.library.caltech.edu/5553/ C. H. Collins.et al.:Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones.Mol.Microbiol.2005.55(3).712–723]
  4. [http://mic.sgmjournals.org/cgi/content/abstract/151/11/3589 B. Koch. et al.:The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors.Microbiology 151 (2005),3589-3602]
Home The Team The Project Parts Submitted to the Registry Reference Notebook Acknowledgements