Html:Matlab code

From 2008.igem.org

Revision as of 01:41, 30 October 2008 by ChrisBrown (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
function [omega_H_dim, H_dim, H_dim2, H_dim3]=model(omega_H, omega_AH, phi)
%This function takes in 3 dimensionless parameters (omega_H = holincontribution,
%omega_AH= antiholin contribution and phi = coupling contribution)

Hc=1000;              % Critical Holin Concentration (1000 holin/cell)
H_dim = [];
omega_H_dim =[];
for j=.001:1:200
    A = omega_H*j-omega_AH*.001+phi;              % linear term representing the critical holin concentration
    M = [1 -A -phi*omega_H*j];                    % polynomial representing the critical holin concentration
    B = max(roots(M));                            % returns the larger of the two roots of M
    H_dim = [H_dim B/Hc];
    omega_H_dim = [omega_H_dim omega_H*j];
end

H_dim2 = [];
omega_H_dim2 =[];
for j=.001:1:200
    A = omega_H*j-omega_AH+phi;                   % linear term representing the critical holin concentration
    M = [1 -A -phi*omega_H*j];                    % polynomial representing the critical holin concentration
    B = max(roots(M));                            % returns the larger of the two roots of M
    H_dim2 = [H_dim2 B/Hc];
    omega_H_dim2 = [omega_H_dim2 omega_H*j];
end

H_dim3 = [];
omega_H_dim3 =[];
for j=.001:1:200
    A = omega_H*j-omega_AH*100+phi;               % linear term representing the critical holin concentration
    M = [1 -A -phi*omega_H*j];                    % polynomial representing the critical holin concentration
    B = max(roots(M));                            % returns the larger of the two roots of M
    H_dim3 = [H_dim3 B/Hc];
    omega_H_dim3 = [omega_H_dim3 omega_H*j];
end
semilogx(50:1:5e3,ones(size(50:1:5e3)))
hold on
semilogx(omega_H_dim, H_dim, omega_H_dim2, H_dim2, omega_H_dim3, H_dim3)
axis([50, 5e3, 0.01, 2])
title(['Lambda Lysis Model with phi = ',int2str(phi)])
xlabel('omega H')
ylabel('[H]/[H]critical')
legend('0.001*omega AH','omega AH','100*omega AH')
hold off