Team:ETH Zurich/Project/Conclusions

From 2008.igem.org

Revision as of 01:50, 30 October 2008 by Luca.Gerosa (Talk | contribs)


In this iGEM project we addressed the question of how the minimal genome of a particular organism, E.coli, could be identified and made available in the form of minimal strain to researchers. The motivations that made the finding of a minimal genome strain appealing were two folds: the indication that in essentiality are hidden some of fundamental yet missing biological properties and the desire of providing a convinient chassis for synthetic biology. In this contest we required our ideal minimal genome to have two properties:

  • to be as simple as possible, meaning as much reduced in genome size and gene content as possible
  • to be vital, meaning that we were aiming for strains able to provide a reactive and productive background on which to add synthetic functionalities.

The approach we proposed was based on two main considerations. First, that the space solution of possible minimal genomes is huge and untractable without taking an heuristic approach. Second, that evolution probably worked in the contrary sense, by constructing complex organism starting from a very minimal set of genes. Combining the two concepts, we decided to take an evolutionary reductive approach. In order to do so, we had to invert two main biological mechanisms. First, losing part of the genome should made possible, while cells (for the evolution motivations discussed before) are indeed more equipped for uptaking chromosomal parts. Second, to give a fitness advantage to cell that has a reduced genome, things that to our knowledge have never been showed before. Moreover, these two mechanisms had to be implemented in a framework that permitted the sequential application of a mutation phase (reduction) and selection phase (fitness function) in order to form the cycle that is proper of an evolutionary algorithm. By bringing out the concept that cells are natural carriers of our possible solutions (they indeed carry a chromosome), we investigated the following solutions:

  • reduction of the chromosome could be achieved by controlled expression of restriction enzymes and ligase.
  • reduced strain can be made fitter by penalizing big chromosomal size through a nucleotide limitation in the feeding.
  • populations of our solutions (cells) can be repetitevly subjected to reduction and selection phases by using a chemostat machinery.



are two-fold and all related to the semplicity and essentiality of minimal genomes: they may lead to fundamental biological insights and be