Team:Paris/Modeling/More FP Algo
From 2008.igem.org
find_P
function optimal_parameters = find_FP(X_data, Y_data, initial_parameters) % gives the 'best parameters' involved in f4, f5, f6, f7 or f8 % with FlhDC = 0 or FliA = 0 by least-square optimisation % X_data = vector of given values of [FliA]i or [FlhDC]i (experimentally % controled) % Y_data = vector of experimentally measured values f4, f5, f6, f7 or f8 % corresponding of the X_data % initial_parameters = values of the parameters proposed by the literature % or simply guessed % = [beta, K -> (K)/(coef), n] function output = act_pProm(parameters, X_data) for k = 1:length(X_data) output(k) = parameters(1)*hill(X_data(k), parameters(2), parameters(3)); end end options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4); % options for the function lsqcurvefit optimal_parameters = lsqcurvefit( @(parameters, X_data) act_pProm(parameters, X_data),... initial_parameters, X_data, Y_data, options ); % search for the fittest parameters, between 1/10 and 10 times the initial % parameters end