Team:Paris/Modeling/f3bis

From 2008.igem.org

(Difference between revisions)
Line 1: Line 1:
-
[[Image:f3env.png|thumb]] (see [[Team:Paris/Modeling/Oscillations#Biochemical_Assumptions|the considerations on the use of EnvZ]])
+
{{Paris/Menu}}
-
We have [EnvZ]<sub>produced</sub> = {coef<sub>env</sub>}''expr(pTet)'' = {coef<sub>env</sub>} &#131;1([aTc]<sub>i</sub>)
+
{{Paris/Header|Method & Algorithm : &#131;6}}
-
and [EnvZ]<sub>total</sub> = [EnvZ]<sub>b</sub> + [EnvZ]<sub>produced</sub>
+
[[Image:f6DCA.png|thumb|Specific Plasmid Characterisation for &#131;6]]
-
and [FliA] = {coef<sub>FliA</sub>}''expr(pBad)'' = {coef<sub>FliA</sub>} &#131;2([arab]<sub>i</sub>)
+
We have <span style="color:#0000FF;">[''FlhDC'']<sub>''real''</sub> = {coef<sub>''flhDC''</sub>} &#131;1([aTc]<sub>i</sub>)</span>
 +
and <span style="color:#0000FF;">[''FliA'']<sub>''real''</sub> = {coef<sub>''fliA''</sub>} &#131;2([arab]<sub>i</sub>)</span>
-
So, if we denote phosphorylated OmpR by ''OmpR<sup>*</sup>'', we have
+
but we use <span style="color:#0000FF;">[aTc]<sub>i</sub> = Inv_&#131;1( [''FlhDC''] ) </span>
 +
and        <span style="color:#0000FF;">[arab]<sub>i</sub> = Inv_&#131;2( [''FliA''] ) </span>
-
[[Image:F3ompfromenv.jpg|center]]
+
So, at steady-states,
-
that we can then introduce in the previous expression ([[Team:Paris/Modeling/f3|see &#131;3]]) :
+
[[Image:F6.jpg|center]]
-
[[Image:F3ompfinalenv.jpg|center]]
+
<br>
-
<br><br>
+
<div style="text-align: center">
 +
{{Paris/Toggle|Table|Team:Paris/Modeling/More_f6_Table}}
 +
</div>
-
{|border="1" style="text-align: center"
 
-
|param
 
-
|signification
 
-
|unit
 
-
|value
 
-
|comments
 
-
|-
 
-
|[expr(pFlhDC)]
 
-
|expression rate of <br> pFlhDC '''with RBS E0032'''
 
-
|nM.min<sup>-1</sup>
 
-
|
 
-
|need for 20 mesures with well choosen values of [aTc]<sub>i</sub>
 
-
|-
 
-
|γ<sub>GFP</sub>
 
-
|dilution-degradation rate <br> of GFP(mut3b)
 
-
|min<sup>-1</sup>
 
-
|0.0198
 
-
|
 
-
|-
 
-
|[GFP]
 
-
|GFP concentration at steady-state
 
-
|nM
 
-
|
 
-
|need for 20 mesures
 
-
|-
 
-
|(''fluorescence'')
 
-
|value of the observed fluorescence
 
-
|au
 
-
|
 
-
|need for 20 mesures
 
-
|-
 
-
|''conversion''
 
-
|conversion ratio between <br> fluorescence and concentration
 
-
|nM.au<sup>-1</sup>
 
-
|(1/79.429)
 
-
|
 
-
|}
 
-
<br><br>
+
<div style="text-align: center">
 +
{{Paris/Toggle|Algorithm|Team:Paris/Modeling/More_FP_Algo}}
 +
</div>
-
{|border="1" style="text-align: center"
+
Then, if we have time, we want to verify the expected relation
-
|param
+
 
-
|signification <br> corresponding parameters in the [[Team:Paris/Modeling/Oscillations#Resulting_Equations|equations]]
+
[[Image:SumpFlgA.jpg|center]]
-
|unit
+
 
-
|value
+
<br>
-
|comments
+
 
-
|-
+
<center>
-
|K<sub>21</sub><sup>eff</sup>
+
[[Team:Paris/Modeling/Implementation| <Back - to "Implementation" ]]| <br>
-
|dissociation constant OmpR_-_EnvZ <br> K<sub>21</sub><sup>eff</sup>
+
[[Team:Paris/Modeling/Protocol_Of_Characterization| <Back - to "Protocol Of Characterization" ]]|
-
|nM
+
</center>
-
|
+
-
|the literature [[Team:Paris/Modeling/Bibliography|[?] ]] gives K<sub>21</sub> =
+
-
|-
+
-
|n<sub>21</sub>
+
-
|complexation order OmpR_-_EnvZ <br> n<sub>21</sub>
+
-
|no dimension
+
-
|
+
-
|the literature [[Team:Paris/Modeling/Bibliography|[?] ]] gives n<sub>21</sub> =
+
-
|-
+
-
|{coef<sub>env</sub>}
+
-
|coefficient due to the difference of the RBS and degradation rate between EnvZ and GFP <br> ! not precised in the equations !
+
-
|no dimension
+
-
|
+
-
|! not precised in the equations ! watch out when writing the corresponding simulating program
+
-
|-
+
-
|[EnvZ]<sub>b</sub>
+
-
|"basal" presence of EnvZ <br> [EnvZ]<sub>b</sub>
+
-
|nM
+
-
|
+
-
|the literature [[Team:Paris/Modeling/Bibliography|[?] ]] gives, under high osmolarity, [EnvZ]<sub>b</sub> =
+
-
|-
+
-
|[OmpR]<sub>b</sub>
+
-
|"basal" presence of OmpR <br> [OmpR]<sub>b</sub>
+
-
|nM
+
-
|
+
-
|the literature [[Team:Paris/Modeling/Bibliography|[?] ]] gives, under high osmolarity, [OmpR]<sub>b</sub> =
+
-
|}
+

Revision as of 14:26, 29 October 2008

Method & Algorithm : ƒ6


Specific Plasmid Characterisation for ƒ6

We have [FlhDC]real = {coefflhDC} ƒ1([aTc]i) and [FliA]real = {coeffliA} ƒ2([arab]i)

but we use [aTc]i = Inv_ƒ1( [FlhDC] ) and [arab]i = Inv_ƒ2( [FliA] )

So, at steady-states,

F6.jpg


↓ Table ↑


param signification unit value comments
(fluorescence) value of the observed fluorescence au need for 20 mesures with well choosen values of [aTc]i
and for 20 mesures with well choosen values of [arab]i
and 5x5 measures for the relation below?
conversion conversion ratio between
fluorescence and concentration
↓ gives ↓
nM.au-1 (1/79.429)
[GFP] GFP concentration at steady-state nM
γGFP dilution-degradation rate
of GFP(mut3b)
↓ gives ↓
min-1 0.0198 Time Cell Division : 35 min.
ƒ6 activity of
pFlgA with RBS E0032
nM.min-1



param signification
corresponding parameters in the equations
unit value comments
β26 total transcription rate of
FlhDC><pFlgA with RBS E0032
β26
nM.min-1
(K3/{coeffliA}) activation constant of FlhDC><pFliL
K3
nM
n3 complexation order of FlhDC><pFliL
n3
no dimension
β27 total transcription rate of
FliA><pFliL with RBS E0032
β27
nM.min-1
(K9/{coefflhDC}) activation constant of FliA><pFliL
K9
nM
n9 complexation order of FliA><pFliL
n9
no dimension


↓ Algorithm ↑


find_ƒP

function optimal_parameters = find_FP(X_data, Y_data, initial_parameters)
% gives the 'best parameters' involved in f4, f5, f6, f7 or f8  
% with FlhDC = 0 or FliA = 0 by least-square optimisation
 
% X_data = vector of given values of [FliA]i or [FlhDC]i (experimentally
% controled)
% Y_data = vector of experimentally measured values f4, f5, f6, f7 or f8
% corresponding of the X_data
% initial_parameters = values of the parameters proposed by the literature
%                       or simply guessed
%                    = [beta, K -> (K)/(coef), n]
 
     function output = act_pProm(parameters, X_data)
         for k = 1:length(X_data)
                 output(k) = parameters(1)*hill(X_data(k), parameters(2), parameters(3));
         end
     end
 
options=optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4);
% options for the function lsqcurvefit
 
optimal_parameters = lsqcurvefit( @(parameters, X_data) act_pProm(parameters, X_data),...
     initial_parameters, X_data, Y_data, options );
% search for the fittest parameters, between 1/10 and 10 times the initial
% parameters
 
end

Then, if we have time, we want to verify the expected relation

SumpFlgA.jpg


<Back - to "Implementation" |
<Back - to "Protocol Of Characterization" |