Team:Rice University/CONSTRUCTS

From 2008.igem.org

(Difference between revisions)
Line 19: Line 19:
==='''Constructs'''===
==='''Constructs'''===
-
     <p>''Saccharomyces cerevisiae'' are widely used for baking and brewing, and they are particularly useful for synthesizing metabolites under fermentation conditions which prevent the air oxidation of many useful compounds. To achieve our project and expand the synthetic biology toolbox for programming yeast, we have introduced into the iGem registry BioBricks encoding 3 yeast promoters, 3 yeast terminators, a two micron origin of replication, 2 selectable markers, 2 enzymes, and a yeast integration plasmid. In addition, we have generated seven constructs using these parts.  Furthermore, we have submitted two additional parts representing a foundational tool, including a gene encoding an amber suppressed RFP biobrick for screening of SupF+ (Amber suppressor) genotype and an amber suppressor tRNA biobrick. <br />
+
     <p>''Saccharomyces cerevisiae'' are widely used for baking and brewing are particularly useful for synthesizing metabolites under fermentation conditions. Such microaerobic conditions prevent the air oxidation of bioreactive compounds and are optimal for the ''in vivo'' synthesis of resveratrol. To achieve our project and expand the synthetic biology toolbox for programming yeast, we have introduced into the iGem registry BioBricks encoding 3 yeast promoters, 3 yeast terminators, a two micron origin of replication, 2 selectable markers, 2 enzymes, and a yeast integration plasmid. In addition, we have generated seven constructs using these parts.  Furthermore, we have submitted two additional parts representing a foundational tool, including a gene encoding an amber suppressed RFP biobrick for screening of SupF+ (Amber suppressor) genotype and an amber suppressor tRNA biobrick. <br />
     </p>
     </p>

Revision as of 02:01, 30 October 2008


justify justify


GradientBar.jpg

ProjectTitle.jpg


OUR TEAM:::SUMMARY ::: BACKGROUND ::: STRATEGY ::: CONSTRUCTS ::: RESULTS ::: ONGOING WORK

Constructs

Saccharomyces cerevisiae are widely used for baking and brewing are particularly useful for synthesizing metabolites under fermentation conditions. Such microaerobic conditions prevent the air oxidation of bioreactive compounds and are optimal for the in vivo synthesis of resveratrol. To achieve our project and expand the synthetic biology toolbox for programming yeast, we have introduced into the iGem registry BioBricks encoding 3 yeast promoters, 3 yeast terminators, a two micron origin of replication, 2 selectable markers, 2 enzymes, and a yeast integration plasmid. In addition, we have generated seven constructs using these parts. Furthermore, we have submitted two additional parts representing a foundational tool, including a gene encoding an amber suppressed RFP biobrick for screening of SupF+ (Amber suppressor) genotype and an amber suppressor tRNA biobrick.


Yeast Promoters

BBa_K122000 pPGK1 This is the 1500 bp upstream of the PGK1 coding region in an industrial yeast strain. Constitutive promoter. 1497
BBa_K122002 pADH1 700bp upstream of ADH1 promoter region containing RBS. Constitutive promoter. 701
BBa_K122017 pGAL1 + tetO The GAL1 promoter which is highly repressed by glucose. An additional tetracycline operator site was included upstream of the RBS to allow repression by tetR. 484


Yeast Terminators

BBa_K122003 tCYC1 300bp downstream the CYC1 coding region in a standard yeast strain. 300
BBa_K122004 tADH1 300bp downstream the ADH1 coding region in a standard yeast strain. 300
BBa_K122013 tPGK1 1000bp downstream the PGK1 coding region in an industrial yeast strain. 1000

 


Selectable Markers

BBa_K122018 ZeoR Zeocin Resistance Gene 300
BBa_K122008 BleoR Bleocin Resistance Gene under pTet promoter 800ish
BBa_K122014 ORI+HisTag 2 Micron ORI and Histadine Tag <9000

 



Project Specific Constructs

BBa_K122001 [pGAL1][tetO][ZeoR] C2.jpg 874
BBa_K122005 Tyrosine Ammonia Lyase TAL.jpg 1933
BBa_K122010 4CL:STS 4CL.jpg 4000
BBa_K122012 [pPGK1][4CL:STS][tCYC1] C1.jpg 5497
BBa_K122015 [pGAL1][tetO][ZeoR][tADH1] C2full.jpg 1175
BBa_K122021 [pADH1][TAL][tPGK1] C3.jpg 2651
BBa_K122019 [pPGK1][4CL:STS][tCYC1][pGAL1][tetO][ZeoR][tADH1] C1C2C3.jpg 1824

 


Additional Bacterial Parts


Novel Zero Leak Inverter (K122007 and K122006)

Amber Suppressor tRNA
K122007 The supF construct, an amber suppressor tRNA, allows for read-through at native amber (TAG) stop codons. 211
K122006 Point Mutation of RFP(13521) with incorporation of an amber stop codon at the chemophore. 923



Through incorporation of amber stop codons or point mutations of tyrosine codons (TAC) to TAG within the coding region, a genetic circuit can be used to add an additional level of regulation and determine whether a full protein or partial peptide with be synthesized. This design has characteristically high signal-to-noise ratio, with virtually no leakage.




Arfp.jpg