DNA Computing

Molecular Computation of Solutions to Combinatorial Problems

by Leonard M. Adleman in 1994

Overview

- Motivation (DHP Problem)
- The Approach by Dr. Aldeman using DNA Computing
- Pros and Cons of the Approach

Motivation

• Directed Hamiltonian Path (DHP) Problem

Given: an oriented graph, which consists of points (vertices) and of arrows (oriented edges).

Problem: find a path through the graph that starts and ends at the given vertices (Vin and Vout) and includes every other vertex exactly once.

Example of DHP Problem

Nondeterministic Algorithm by Aldeman

- 1. Generate Random paths through the graph
- 2. From all paths created in step 1, keep only those that start at Vin and end at Vout
- From all remaining paths, keep only those that visit exactly n vertices.
- 4. From all remaining paths, keep only those that visit each vertex at least once.
- 5. if any path remains, return "yes";otherwise, return "no".

 each vertex i in the graph is associated with a random 20-mer sequence of DNA denoted Oi.

O₂ = ACTACGATTCCAGTACGACT

O₃ = GGTACAGTCCATGAGCGTAT

O₄ = CTGTGACAAGTCACGACTAT

The reverse complementary strand is <u>Oi</u>

O2 = AGTCGTACTGGAATCGTAGT

O3 = ATACGCTCATGGACTGTACC

O₄ = ATAGTCGTGACTTGTCACAG

 Each edge i->j is presented by an oligonucleotide Oi->j that is the 3' 10-mer of Oi followed by the 5' 10-mer of Oj

```
O_2 = ACTACGATTCCAGTACGACT
O_3 = GGTACAGTCCATGAGCGTAT
O_4 = CTGTGACAAGTCACGACTAT
O_{3->4} = ATGAGCGTATCTGTGACAA
```

• For the edges $O_{i\rightarrow j}$ invovled the begin and end (begin i = 0; end j = 6)

Oo->j consists of 3' 20-mer of Oo and 5' 10-mer of Oj Oi->6 consists of 3' 10-mer of Oi and 5' 10-mer of O6

Because DNA has a 3' end and a 5' end
 O2->3 ≠ O3->2 (Preserves edge orientation)

• 50 pmol of Oi and 50 pmol of Oi->j are mixed together in a single ligation reaction

• Oi serves as splints to bring Oi->j
Through ligation many random paths will be created

Examples of random paths

Oo->1	O1-:	>2 02-	>3 03-	>4 04-	>5 ()5->6
<u>Oo</u>	<u>O1</u>	<u>O2</u>	<u>O3</u>	<u>04</u>	<u>O5</u>	<u>06</u>

Step 2: keep paths that start at Vin and end at Vout

- The product of Step 1 is amplified by PCR using primers Oo and <u>O6</u>
- -> only those molecules encoding paths that begin with vertex o and end with vertex 6 are amplified

Problem:

Oo->3		03->4		O ₄ ->5		O5->6		
<u>Oo</u>	<u>C</u>)3	<u>C</u>)4	<u>O5</u>		<u>06</u>	

Step 3: keep only those that visit exactly 7 vertices

- The product of Step 2 is run on an agarose gel and the 140 bp band (for 7 vertices) was excised and soaked in ddH2O
- The product was PCR-amplified and gel-purified several times to enhance its purity

00->	3 03	->4 O4	1->5 O5	5->4 O	4->5	05->6
<u>Oo</u>	<u>O3</u>	<u>04</u>	<u>05</u>	<u>04</u>	<u>O5</u>	<u>06</u>

Step 4: keep only those that visit each vertex at least once.

• From the product from Step 3 single stranded DNA are generated.

PCR using primers Oo and biotinylated <u>O6</u>

Step 4: keep only those that visit each vertex at least once.

• ssDNA is annealed with biotinylated O1

- the complex is immobilized with MAGNET and then the sample is washed several times
 -> only ssDNA with O1 remain
- Process is repeated successively with biotinlylated <u>O2</u>, <u>O3</u>, <u>O4</u>, <u>O5</u> -> the remaining ssDNA has the right answer

Step 5: Get The Answer

Dr. Aldeman used "Graduated PCR"
 PCR with primers of Oo and Oi in the path the now the position of vertex i read the length of the PCR product

example: for vertex 3

primers: Oo and O3

Oc	Oo->1 O1->2		>2	02->3		03->4		O ₄ ->5		O5->6	
<u>Oo</u>		<u>O1</u>	<u>(</u>	<u> </u>	9	03	<u>(</u>	<u> </u>	(05	<u>06</u>

A band of 80 bp \rightarrow 80/20 = 4 th position in the sequence

Step 5: Get The Answer

• Today:

sequencing

Scale up

- It took 7 days to done the whole experiment.
 This Proof-of-concept experiment -> can be scaled up for 100 vertices
- 1. Ligation of the oligos for the edges and the vertecices
- 2.PCR with Oo and Ogg
- 3.Cut the right band (2000bp)
- 4. Using biotin-avidin magnetic beads system
- 5. Sequencing

It would last half a year or even more, still it is faster than normal approach.

Advantages of DNA Computing

- Theoretical higher performance (operation per second) one molecule is one operation 10^{20} molecules operated in a week $\approx 1.65 * 10^{14}$ operation per sec (10^{12})
- Remarkable energy efficiency
 theoretical maximum of 34 * 10¹⁹ operations per joule (10⁹)

Disadvantages of DNA Computings

- Amount of DNA grow exponentially with the complexity of problems
 - ->for 200 cities we would require an amount of DNA that weighed more than the Earth.
- Unexpected errors because of unspecific hybridization
- requires human assistance
- DNA degradation

References

- Molecular computation of solutions to combinatorial problems, L. M. Adelman
- http://foldoc.org/index.cgi?query=dna+computing&ac tion=Search
- http://www.promega.com/tbs/tb246/tb246.pdf
- http://www.ams.org/featurecolumn/archive/dnaabc1.html
- www.cse.lehigh.edu/~lopresti/Courses/2003-04/CSE397-497/lecture_22.ppt

Thank you for your attention