Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 000 000	000 00		0000 0000 00	

Ideas on modelling of phage dynamics

Yin Cai and Maria Münch

Bioquant

August 14th, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへの

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 000 000	000 00		0000 0000 00	

Table of contents

1 Introduction

Definitions and overview General equations

2 Possible substances for models

Sensing Killing I

Killing II

3 Model for phage dynamics Equations Simulations

4 Conjugation model

5 Test model

Equations

Simulations

Extended test model

6 Literature

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
● 00 ○○	000000	000 00		0000	
D (111	000			00	

3/44

Definitions and overview

elementary steps of mathematical modelling

1 definition of the purpose of the model

2 biological basics, observations of the real system

3 development of a first system approach

④ draft of simulation tools

6 analysis of simulation results

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
D C III	1.5.5.1				

4/44

Definitions and overview

elementary steps of mathematical modelling

1 definition of the purpose of the model

2 biological basics, observations of the real system

3 development of a first system approach

④ draft of simulation tools

6 analysis of simulation results

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
D C III	1.5.5.1				

5/44

Definitions and overview

elementary steps of mathematical modelling

- 1 definition of the purpose of the model
- 2 biological basics, observations of the real system
- **3** development of a first system approach
- ④ draft of simulation tools
- analysis of simulation results

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
D C III	1.5.5.1				

6/44

Definitions and overview

elementary steps of mathematical modelling

- 1 definition of the purpose of the model
- 2 biological basics, observations of the real system
- **3** development of a first system approach
- 4 draft of simulation tools
- 5 analysis of simulation results

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
D C III	1.5.5.1				

7/44

Definitions and overview

elementary steps of mathematical modelling

- 1 definition of the purpose of the model
- 2 biological basics, observations of the real system
- **3** development of a first system approach
- 4 draft of simulation tools
- **5** analysis of simulation results

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature				
000	000000 000 000	000 00		0000 0000 00					
Definitions and	Definitions and overview								

Population

group of individuals that belong to the same species, live in the same area, and breed with others in the group

Population model

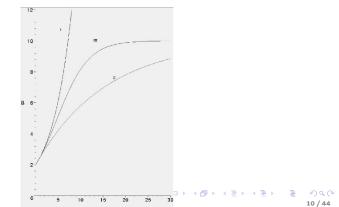
hypothetical population that attempt to exhibit the key characteristics of a real population

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 000 000	000 00		0000 0000 00	
Definitions and	loverview				

Population

group of individuals that belong to the same species, live in the same area, and breed with others in the group

Population model


hypothetical population that attempt to exhibit the key characteristics of a real population

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
00 00	000000 000 000	000 00		0000 0000 00	

Definitions and overview

Types of population models

- Linear growth
- Exponetial growth (I)
- Bounded growth (II)
- Logistic growth (III)

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
•0	000	00		0000	
c 1					

General equations

Standard balance equation

rate of change of quantity = production rate of quantity - loss rate of quantity

$$\frac{d}{dt}P(t) = BP - DP = (B - D)P$$

- $P\left(t
 ight)$ amount of species at time t
 - $B \ \ {\rm normalised}$ birth rate

 $B = \frac{\text{birth rate}}{P} = \text{ number of births per unit time per unit population}$ $D = \frac{\text{death rate}}{P} = \text{ number of deaths per unit time per unit population}$

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature			
000	000000	000		0000				
00	000	00		0000				
	000			00				
General equati	General equations							

Some special cases

Constant birth and death rates

$$\frac{d}{dt}P\left(t\right) = kP \Leftrightarrow k = (B - D)$$

 $\Rightarrow P\left(t\right)=P_{0}e^{kt}$ with initial population size $P\left(0\right)=P_{0}$

• Decreasing birth rate with increasing population

$$\frac{d}{dt}P(t) = B_0P - B_1P^2 - D_0P = (B_0 - D_0)P - B_1P^2$$

$$\Leftrightarrow B = B_0 - B_1P - D_0$$

substitution:

 $k = B_1, M = \frac{B_0 - D_0}{B_1} \Rightarrow \text{Logistic equation } \frac{d}{dt} P(t) = kMP - kP^2$ $\Rightarrow P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-kMt}} \text{ with initial population size } P(0) = P_0$

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000 0 0	000000 000 000	000 00		0000 0000 00	
General equati	ons				

Some special cases

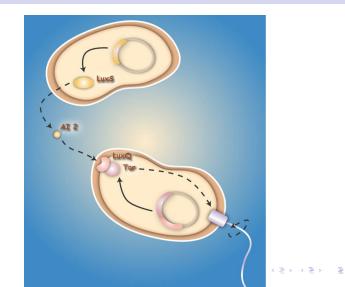
• Constant birth and death rates

$$\frac{d}{dt}P\left(t\right) = kP \Leftrightarrow k = (B - D)$$

 $\Rightarrow P\left(t\right)=P_{0}e^{kt}$ with initial population size $P\left(0\right)=P_{0}$

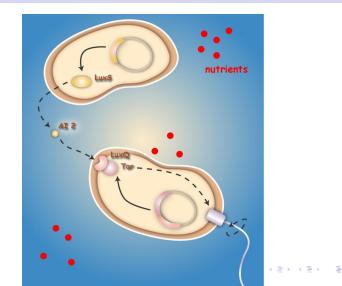
· Decreasing birth rate with increasing population

$$\frac{d}{dt}P(t) = B_0P - B_1P^2 - D_0P = (B_0 - D_0)P - B_1P^2$$

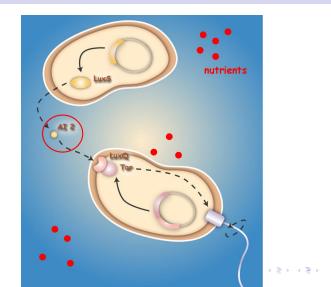

$$\Leftrightarrow B = B_0 - B_1P, D = D_0$$

substitution:

 $\begin{aligned} k &= B_1, M = \frac{B_0 - D_0}{B_1} \Rightarrow \textit{Logistic equation } \frac{d}{dt} P(t) = kMP - kP^2 \\ \Rightarrow P(t) &= \frac{MP_0}{P_0 + (M - P_0)e^{-kMt}} \text{ with initial population size } P(0) = P_0 \end{aligned}$


Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	•00000 000 000	000 00		0000 0000 00	
Sensing					

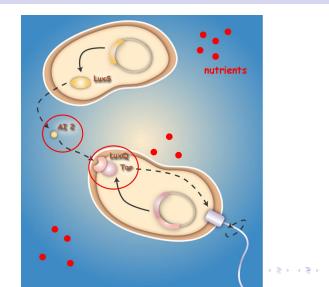
Sensing process


Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	00000 000 000	000 00		0000 0000 00	
Sensing					

concentration of nutrients

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	00000 000 000	000 00		0000 0000 00	
Sensing					

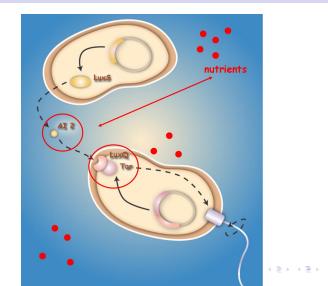
concentration of AI-2



E

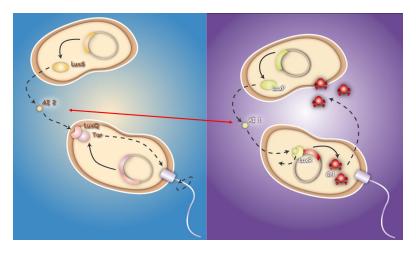
Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000●00 000 000	000 00		0000 0000 00	
<u> </u>					

Sensing

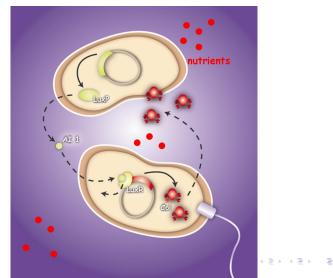

number of LuxQ proteins

= +)((+)

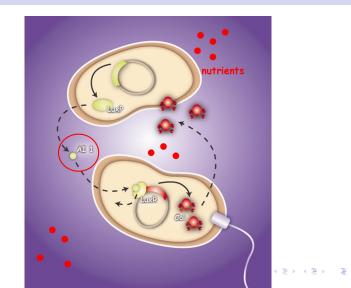
Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	
Sensing					


ratio between AI-2 and nutrients

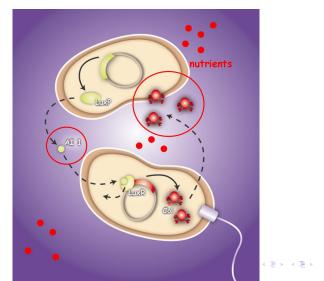
= *)(((*


Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	00000 000 000	000 00		0000 0000 00	
Sensing					

ratio between AI-2 and AI-1

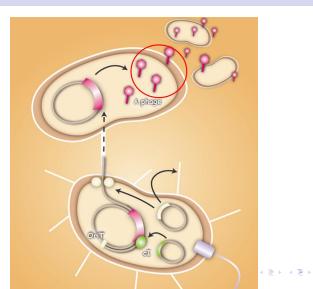

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 •00 000	000 00		0000 0000 00	
Killing I					

concentration of nutrients


Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	
Killing I					

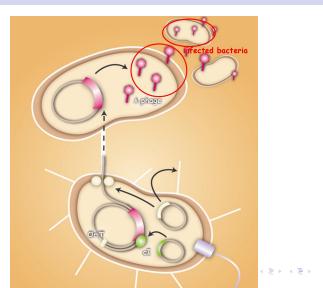
concentration of AI-1

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	
Killing I					


concentration of toxin

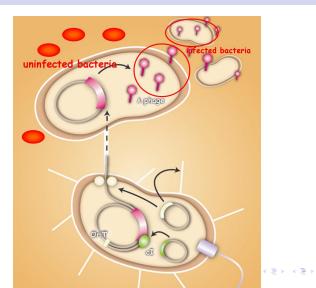
≣ ∽ < (~ 22 / 44

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	●OO			00	
Killing II					


concentration of λ phage

= ♥) Q (♥ 23 / 44

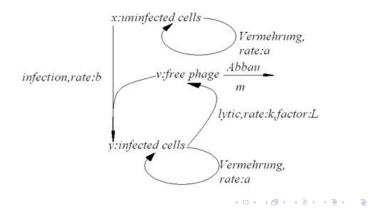
Intro	oduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000)	000000	000		0000	
00		000	00		0000	
		000			00	
Killi	ng II					


number of infected bacteria

े≣ •∕) ९ (२ 24 / 44

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	
Killing II					

number of uninfected bacteria



► = ↔) Q (↔ 25 / 44

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	●00		0000	
00	000	00		0000	
	000			00	
Equations					

Phage basic model

- model for lytic phage
- model does not include the possibility of bacterial growth constrained by target cell limitation

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000 00	000000 000 000	000 00		0000 0000 00	
Equations	000			00	

Phage basic model

$$\frac{d}{dt}x = ax - bvx - H(t) x$$
$$\frac{d}{dt}y = ay + bvx - ky - H(t) y$$
$$\frac{d}{dt}v = kLy - bvx - mv - h(t) v$$

$$x$$
 – uninfected cells

$$y - \text{infected cells (lytic cells)}$$

$$v$$
 – free phage

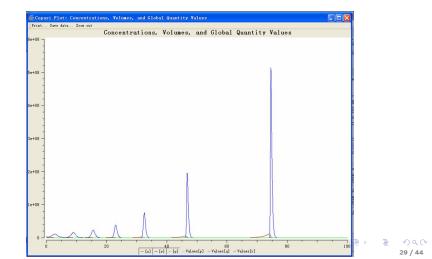
- replication coefficient a
- b transmission coefficient
- k lysis rate
- L burst size
- m decay rate of free phage

h/H – responses against the bacteria or against the phage 27/44

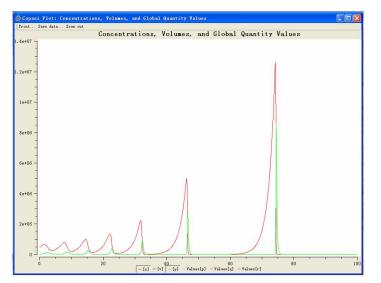
▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 の Q @

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	
Equations					

Simplified basic model


$$\frac{d}{dt}x = ax - bvx$$
$$\frac{d}{dt}y = ay + bvx - ky$$
$$\frac{d}{dt}v = kLy - bvx - mv$$

(ロ)、(部)、(主)、(主)、(三)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0)、(3,0),(3,0)、(3,0),(3,0)


Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	●O		0000	
	000			00	

Simulations

$$a = 0.5, b = 10^{-7}, k = 5, L = 100, m = 5, x (0) = 500000, v (0) = 4000000, y (0) = 0$$

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	0.		0000	
	000			00	
Simulations					

≣ ∽ < (~ 30 / 44

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	

Assumptions

- mating occurs at random with a frequency that is jointly proportional to the concentrations of plasmid-free and plasmid-bearing cells
- plasmid loss by segregation occurs at a negligible rate
- there is no significant delay between the time a transconjugant receives the plasmid and the time when it can begin to transmit it
- the original donors and the transconjugants transfer the plasmid at the same rate
- all bacterial clones grow at the same rate

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 000 000	000 00		0000 0000 00	

Conjugation basic model

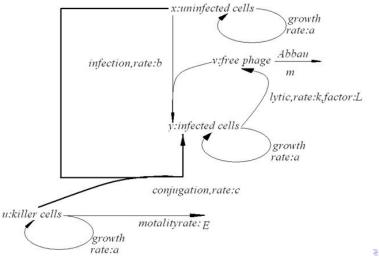
$$\frac{d}{dt}n = \Psi n - c (n_+ + n_*) n$$
$$\frac{d}{dt}n_+ = \Psi n_+$$
$$\frac{d}{dt}n_* = \Psi n_* + c (n_+ + n_*) n$$

- n recipient cells
- n_+ donor cells
- n_{*} conjugated cells
- Ψ replication coefficient
- $c \ -$ conjugational transfer rate constant

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 000 000	000 00		0000 0000 00	

Simplified basic model

In our system: n_* cells does not have the helper plasmid with genes coding pilli etc. $\Rightarrow n_*$ is not conjugation donor


$$\frac{d}{dt}n = \Psi n - cn_{+}n$$
$$\frac{d}{dt}n_{+} = \Psi n_{+}$$
$$\frac{d}{dt}n_{*} = \Psi n_{*} + cn_{+}n$$

イロト イロト イヨト イヨト 三日

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 000 000	000 00		0000 0000	
Equations					

Equations

Basic test model - scheme

≣ ≁) Q (* 34 / 44

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 000 000	000 00		0000 0000 00	
Equations					

• Does not include secondary infection of phages

• Does not include the time which is needed for conjugation

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 000 000	000 00		0000 0000 00	
Equations					

Basic test model

$$\frac{d}{dt}x = ax - bvx - cux$$
$$\frac{d}{dt}y = ay + bvx - ky + cux$$
$$\frac{d}{dt}v = kLy - bvx - mv$$
$$\frac{d}{dt}u = au - E_1u - E_2u^2$$

- x uninfected cells
- y infected cells (lytic cells)
- v free phage
- u killer cells, conjugation donor
- a replication coefficient
- b transmission coefficient

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000 000 000	000 00		000● 0000 00	
Equations					

Basic test model

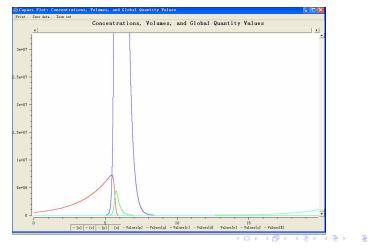
$$\frac{d}{dt}x = ax - bvx - cux$$
$$\frac{d}{dt}y = ay + bvx - ky + cux$$
$$\frac{d}{dt}v = kLy - bvx - mv$$
$$\frac{d}{dt}u = au - E_1u - E_2u^2$$

c – conjugational transfer rate constant

イロト (四) (日) (日) (日) (日) (日)

37 / 44

$$k$$
 – lysis rate


L – burst size

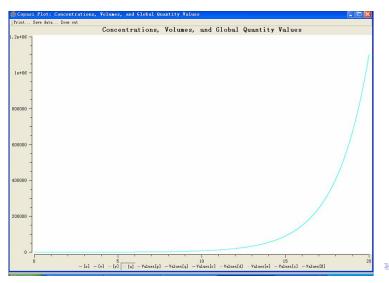
- m decay rate of free phage
- E_1 normalized death rate
- E_2 inner stress rate

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	

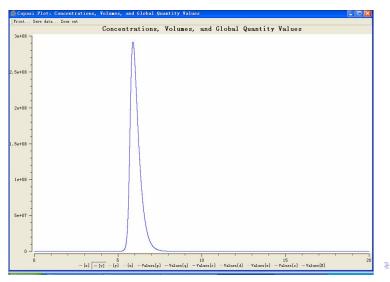
Simulations

$$a = 0.5, b = 10^{-7}, k = 5, L = 100, m = 5, x (0) =$$

500000, $v (0) = 0, y (0) = 0, u (0) = 50, E = 0, c = 10^{-10}$

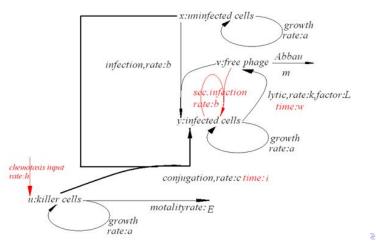


Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	
Simulations					


≜ ∽৭.ে 39/44

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	
Simulations					

। 40/44


Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	
Simulations					

≣ ৩৭ে 41/44

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			•0	
Extended test model					

Basic test model: second step

≣ ∽९. 42/44

Introduction	Possible substances for models	Model for phage dynamics	Conjugation model	Test model	Literature
000	000000	000		0000	
00	000	00		0000	
	000			00	
Extended test model					

Basic test model: second step

$$\begin{aligned} \frac{d}{dt}x &= ax(t) - bv(t)x(t) - cu(t)x(t) \\ \frac{d}{dt}y &= ay(t) + bv(t)x(t) - ky(t-w) + cu(t-i)x(t-i) \\ \frac{d}{dt}v &= kLy(t-w) - bv(t)(x(t) + y(t)) - mv(t) \\ \frac{d}{dt}u &= au(t) - E_1u(t) - E_2u^2(t) + h - cu(t)x(t) + cu(t-i)x(t-i) \\ \frac{d}{dt}j &= cu(t)x(t) - cu(t-i)x(t-i) \end{aligned}$$

- w phage maturing time
- i~-~ conjugation running time
- h chemotaxis input rate
- j conjugating cells $(\Box) (\Box$

Introduction 000 00	Possible substances for models 000000 000 000	Model for phage dynamics 000 00	Conjugation model	Test model 0000 0000 00	Literature	
Papers						

- Understanding Bacteriophage Therapy as a Density-dependet Kinetic Process, Robert J. H. Payne and Vincent A. A. Jansen, 2001
- The Kinetics of Conjugative Plasmid Transmission: Fit of a Simple Mass Action Model, Bruce R. Levin, Frank M. Stewart and Virginia A. Rice, December 1978
- Stochastic Receptor Expression Allows Sensitive Bacteria to Evade Phage Attack. Part II: Theoretical Analyses, E. Chapman-McQuiston and X. L. Wu, June 2008