Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro

Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K., Schwille, P.

Science, Vol. 320, 9.5.2008

Maximilian Hörner Molecular Biotechnology (Bachelor), 6th Semester University of Heidelberg

Bacterial cell division

- Division septum
 - formation by invagination of the cytoplasmatic membrane and ingrowth of the cell wall
 - positioned fairly precisely at midcell

- How is this spatial regulation achieved?
 - → positioning the division plane is a fundamental problem in biology

- FtsZ is the first protein localized at the future site of cell division
 - FtsZ: bacterial homologue of tubulin
 - assembles into a Z ring
 - recruitment of at least a dozen other proteins

How is assembly of the Z ring limited to midcell?

→ determined by a gradient of negative regulators of Z ring assembly

Maximilian Hörner

Min system

- Min proteins oscillate between cell poles
 - \rightarrow select the cell center as division site
- MinD
 - ATPase, binds to the membrane in an ATP-dependent manner
 - \rightarrow recruits MinC and MinE

• MinC

- inhibitor of FtsZ assembly

• MinE

- induces ATP hydrolysis by MinD \rightarrow dissociation

Min system

- MinD-ATP binds to membrane at the left polar zone
 - \rightarrow recruits MinC and MinE
- MinE displaces MinC and stimulates MinD ATPase
 - \rightarrow proteins release membrane
- MinD-ADP undergoes nucleotide exchange
 - new polar zone of MinD is established, extending towards midcell

Maximilian Hörner

Oscillation of GFP-MinD

Maximilian Hörner

- inhibition of FtsZ assembly at the cell poles due to MinC
 - \rightarrow formation of division septum is restricted to cell center

periodicity of the oscillation: ~40 s

- MinC plays no role in the oscillation
 - \rightarrow passenger in the oscillation

 various theories to explain Min oscillation have been suggested

 some models propose that no spatial markers are required for oscillation

 \rightarrow Min-protein self-organization should also work in vitro

- Loose et al.: experimental approach with a minimal number of components
 - \rightarrow systematical exploration of the Min system

- components: supported lipid bilayer

 - Min E (Alexa647)
 Min D (Bodipy-FL)

 - ATP

Experimental approach

- MinD and ATP in the buffer
 - \rightarrow homogeneous protein layer on supported bilayer
- adding MinE to the buffer
 - \rightarrow observation of planar surface waves within 1 h

scale bar: 50 µm

- movement in a distinct direction
- present for several hours

Theoretical background

Concentration dependency on MinE

 for given concentration of MinD and MinE, waves moved at constant velocity and wavelength

 with increasing concentration of MinE, velocity increased while wavelength decreased

Quantitative characterization

- characteristic protein-density distribution parallel to propagation direction
- density maximum of MinE followed maximum of MinD
- MinE formed a sharp line along trailing edge of the wave (red)
- → pattern resembles situation in cell, where MinE ring moves toward the pole, detaching MinD from the cell membrane

Loose, 2008

ATP dependency

 ATP is necessary for the nucleotide exchange of MinD-ADP to MinD-ATP

• only MinD-ATP can attach to cell membranes

→ in the absence of ATP as well as under the use of a nonhydrolyzable ATP analog no wave formation could be observed

 bleached area remained at original position on the membrane during wave propagation

Loose, 2008

Loose, 2008

Investigation of protein mobility

waves were not result of protein translocation

→ surface waves were generated by sequential rounds of detachment and reattachment of proteins from the soluble pool

Computational model

 observed surface waves were qualitatively different from the behavior predicted by existing theories

- Loose et al. developed a new computational model
 - \rightarrow can describe the situation in vitro and in vivo
 - → mechanism in vitro may also drive Min oscillation in vivo

• Min oscillation is a significant example of selforganization in bacteria

- complex biological behavior can emerge from a limited number of components:
 - two proteins
 - a membrane
 - ATP

Thank you for your attention!