Bacterial culture

Sterile technique

- 1. Always work around a flame
- 2. Flame the mouth and cap of any bottle, flask or tube upon uncapping and recapping
- 3. Sterilize metal instruments between uses by dipping in 100% ethanol and flaming

LB liquid media (1 L)

- 1. Dissolve 25 g LB powder per 1 1 DI H2O
- 2. Autoclave media immediately (115 C for 30 min)
- 3. Add desired antibiotic upon cooling if required
- 4. Store at RT or 4 C

2X TY liquid media (1 L)

- 1. Dissolve 31 g 2X TY powder per 1 L DI H2O
- 2. Autoclave media immediately (115 for 30 min)
- 3. Store at 4 C

LB plates (1 L)

- 1. Dissolve 25 g LB powder and 15 g agar per 1 L DI H2O
- 2. Autoclave media immediately (115 C for 30 min)
- 3. Add desired antibiotic upon cooling if required
- 4. Pour plates 1/3 full when media is cool to the touch, in the hood with sash lowered and flame on
- 5. Allow plates to dry uncovered in the hood
- 6. Store plates in sleeves at 4 C upside down

Beginning a monoclonal culture from a glycerol stock

- 1. Streak LB + antibiotic plate with a glycerol stock stab
- 2. Incubate plate O/N at 37 C
- 3. Pick an individual colony from plate and inoculate 2 ml LB + antibiotic media
- 4. Incubate culture O/N at 37C

Freezing down a glycerol stock of cells

- 1. Pick an individual colony from a plate and inoculate 2 ml LB + antibiotic media
- 2. Incubate at 37 C until OD 600 = 0.5
- 3. Combine 0.8 ml culture + 0.2 ml 80% glycerol in 2 ml cryotube and mix
- 4. Snap freeze samples in an ethanol-dry ice bath
- 5. Store glycerol stock at -80 C

Transformation of chemically competent cells

- 1. Thaw cells and incubate transformant DNA on ice
- 2. Combine 50 ul thawed cells with ~1 ug DNA and mix gently
- 3. Incubate samples on ice 20 min
- 4. Heat shock cells in a 42 C H2O bath for 1 min
- 5. Incubate samples on ice 5 min
- 6. Recover cells in 1 ml 2X TY media, shaking at 37 C for 1 hr
- 7. Plate 20 ul < V < 200 ul culture
- 8. Incubate plates O/N at 37 C

DNA work

Plasmid prep from culture

- 1. Pick an individual colony from a plate and inoculate 2 ml LB + antibiotic media
- 2. Incubate culture O/N at 37 C
- 3. Spin cells down at 10K RPM for 2 min at RT and remove S/N
- 4. Re-suspend cells in 150 ul of miniprep solution 1 by vortexing vigorously
- 5. Incubate samples on ice for 5 min
- 6. Make miniprep solution 2:

Reagent	<u>vol / 1 ml (ul)</u>	[final]
10 X NaOH	20	0.2 X
10 % SDS	100	1%
H2O	880	<u>-</u>
Total volume	1 ml	_

- 7. Add 200 ul miniprep solution 2 to samples and mix carefully by inverting
- 8. Incubate samples on ice for 5 min
- 9. Lyse cells with 150ul miniprep solution 3, add and immediately vortex vigorously
- 10. Incubate on ice 5 min
- 11. Spin cell debris down at 10K RPM for 5 min at RT
- 12. Moved S/N to new tube
- 13. Precipitated plasmid DNA with 1 ml ice cold 100% etOH
- 14. Incubated samples on ice for 5 min
- 15. Spun down plasmid at 10K RPM for 10 min at RT and removed S/N
- 16. Washed plasmid with 0.5 ml 70% etOH, added, vortexed, pulsed down plasmid, and removed $\mbox{S/N}$
- 17. Air dried pellet at 37 C for 20 min
- 18. Resuspended plasmids in 50 ul <= volume <= 200 ul TE buffer + RNASEA at 37 C for 30 min
- 19. Quantitate DNA via spectrometry:
 - a. Dilute DNA as appropriate in H2O (1 \leq DF \leq 1/100)
 - b. Add 1 to 100 ul sample to 394-well-plate well and bring total volume to desired level with water
 - c. Include a blank where the sample is plain TE buffer
 - d. Read absorbances at A260 and A280
 - e. Calculate [DNA] (ng/ul) = DF * A260 * 50

Miniprep solution 1

Reagent	1 L	[final]
Glucose (MW=180.16)	9 g	50 mM
Tris HCl (MW=157.56)	3.9 g	25 mM
EDTA (MW=372.24)	3.7 g	10 mM
H2O	<u>→ 1 L</u>	<u> </u>
Total volume	1 L	-

Miniprep solution 3

Reagent	<u>l L</u>
5 M KAc (MW=98.15)	600 ml (5 M sln) or 88.34 g (powder)
Glacial acetic acid	115
H2O	→ 1 L
Total volume	1 L

(autoclave solutions 1 and 3 and store at 4 C)

Polymerase chain reaction

1. Combine the following on ice:

Reagent		1X (vol in ul)	[final]
10X Buffer	5		1X
10 mM dNTP		1	0.2 mM
50 mM MgSO4		2	2 mM
10 uM F primer		1	0.2 uM
10 uM R primer		1	0.2 uM
H2O		$vol \rightarrow 50$	-
DNA		vol for < 1 ug	-
Taq polymerase		0.2	1 U
Total volume		50 ul	-
1			

2. Thermocycle:

a.	Initial denaturation:	94 C	2 min	
b.	Denaturation:	94 C	30 sec	(repeat 25-35
c.	Annealing:	~55 C	30 sec	cycles of
d.	Extension:	68 C	1 min / kb amplicon	steps b-d)
e.	Final:	68 C	5 min	_
f.	Hold:	12 C	forever	

DNA purification

- 1. Separate products by size on an agarose gel
 - a. 0.8 < gel density < 1.5
 - b. Run at 100V for 40 min at RT
 - c. Visualize DNA under UV light
- 2. Purify DNA (Qiagen Kit)
 - a. Cut DNA band out of gel with a clean razor blade
 - b. Dissolve gel in 3X volume of GQ buffer at 50 C for ~10 min
 - c. Precipitate DNA with 1X volume of isopropanol
 - d. Apply sample to quick spin column and spin DNA into column at 10K RPM for 1 min at RT
 - e. Remove F/T
 - f. Dissolve residual gel by spinning 0.75 ml GQ buffer through column at 10K RPM for 1 min at RT
 - g. Remove F/T
 - h. Wash DNA by spinning 0.5 ml PE buffer through column at 10K RPM for 1 min at RT
 - i. Remove F/T
 - j. Spin residual liquid out of column at 10K RPM for 1 min at RT
 - k. Elute DNA with 50 ul EB buffer; apply buffer to column, incubate at RT for 2 min and spin DNA into a fresh epi tube at 10K RPM for 1 min at RT
 - 1. Quantitate DNA via spectrometry:
 - i. Dilute DNA as appropriate in H2O ($1 \le DF \le 1/100$)
 - ii. Add 1 to 100 ul sample to 394-well-plate well and bring total volume to desired level with water
 - iii. Include a blank where the sample is plain TE buffer
 - iv. Read absorbances at A260 and A280
 - v. Calculate [DNA] (ng/ul) = DF * A260 * 50

Restriction digest

1. Combine on ice:

Reagent	1X (vol in ul)	[final]
10X buffer	5	1X
BSA	0.5	1X
H2O	\rightarrow 50	-
DNA	1 < ug < 10	-
Restriction enzyme	<1	1 <u>U</u>
Total volume	50 ul	-

- 2. Incubate at 37 C for 2-20 hrs
- 3. Heat inactivate enzyme at 65 C for 15 min

Double restriction digest

1. Combine on ice:

Reagent	lX (vol in ul)	[final]
10X buffer	5	1X
BSA	0.5	1X
H2O	→ 50	-
DNA	1 < ug < 10	-
Restriction enzyme 1	<1	1 U
Restriction enzyme 2	<1	1 U
Total volume	50 ul	-

- 2. Incubate at 37 C for 2-20 hrs
- 3. Heat inactivate enzyme at 65 C for 15 min

Vector dephosphorylation

1. Combine on ice:

Reagent	1X (vol in ul)	[final]
10X buffer	5	1X
H2O	→ 50	-
DNA	1 < ug < 10	-
Antart Ptase	<1	1 U
Total volume	50 ul	-

- 2. Incubate at 37 C for 30 min
- 3. Heat inactivate enzyme at 65 C for 15 min
- 4. Purify DNA:
 - a. Add 5 volumes PB1 buffer to sample and mix
 - b. Apply sample to quick spin column and spin DNA into column at 10K RPM for 1 min at RT
 - c. Remove F/T
 - d. Wash DNA by spinning 0.75 ml PE buffer through column at 10K RPM for 1 min at RT
 - e. Remove F/T
 - f. Spin residual liquid out of column at 10K RPM for 1 min at RT
 - g. Elute DNA with 50 ul EB buffer; apply buffer to column, incubate at RT for 2 min and spin DNA into a fresh epi tube at 10K RPM for 1 min at RT
 - h. Quantitate DNA via spectrometry:
 - i. Dilute DNA as appropriate in H2O ($1 \le DF \le 1/100$)
 - ii. Add 1 to 100 ul sample to 394-well-plate well and bring total volume to desired level with water
 - iii. Include a blank where the sample is plain TE buffer
 - iv. Read absorbances at A260 and A280
 - v. Calculate [DNA] (ng/ul) = DF * A260 * 50

Ligation
1. Combine on ice:

Reagent	1X (vol in ul)	[final]
10X buffer	2	1X
H2O	\rightarrow 20	-
Vector DNA	10 < ng < 100	-
Insert DNA	30 < ng < 300	-
T4 DNA ligase	<1	1 U
Total volume	20 ul	_

- Total volume 20 ul
 2. Incubate at 16 C (up to RT) for 10 min
 3. Heat inactivate enzyme at 65 C for 15 min