Team:Harvard
From 2008.igem.org
Line 14: | Line 14: | ||
<!--- body here---> | <!--- body here---> | ||
- | {|align="justify" style="background-color:#FFFFFF;text-indent: 15pt;text-align:justify" cellpadding="50" | + | {|align="justify" style="background-color:#FFFFFF;text-indent: 15pt;text-align:justify" cellpadding="50" width="80%" |
| | | | ||
The 2008 Harvard iGEM project is based on the ability to control and measure the electric current production in Shewanella oneidensis MR-1. Multiple genes in Shewanella have been identified as playing a role in transferring electrons to solid substrates, thus generating an easily detectible electric current. Our goal is to be able to detect differences in current output by the activation and/or deactivation of these genes in Shewanella. To do this, we are using mutant strains of Shewanella which have one or more of these important electron transfer genes knocked out and are reintroducing the genes on an inducible plasmid. The electric current produced will be detected by a multimeter, and read by a computer, creating a computer-biology interface. | The 2008 Harvard iGEM project is based on the ability to control and measure the electric current production in Shewanella oneidensis MR-1. Multiple genes in Shewanella have been identified as playing a role in transferring electrons to solid substrates, thus generating an easily detectible electric current. Our goal is to be able to detect differences in current output by the activation and/or deactivation of these genes in Shewanella. To do this, we are using mutant strains of Shewanella which have one or more of these important electron transfer genes knocked out and are reintroducing the genes on an inducible plasmid. The electric current produced will be detected by a multimeter, and read by a computer, creating a computer-biology interface. |
Revision as of 06:04, 24 October 2008
|