Team:Paris/Project
From 2008.igem.org
David.bikard (Talk | contribs) (→Oscillations) |
David.bikard (Talk | contribs) (→Classical research) |
||
Line 25: | Line 25: | ||
- | |||
Genetic oscillators based on the interaction of a small set of molecular components have been shown to be involved in the regulation of the cell cycle, the circadian rhythms, or the response of several signaling pathways. Uncovering the functional properties of such oscillators then becomes important for the understanding of these cellular processes and for the characterization of fundamental properties of more complex clocks. | Genetic oscillators based on the interaction of a small set of molecular components have been shown to be involved in the regulation of the cell cycle, the circadian rhythms, or the response of several signaling pathways. Uncovering the functional properties of such oscillators then becomes important for the understanding of these cellular processes and for the characterization of fundamental properties of more complex clocks. | ||
Revision as of 13:27, 25 October 2008
SummaryOur project aims at biologically devising a “oscillating FIFO behaviour, synchronized at population level”. Such a setup will trigger periodic events and,therefore, can be considered as a “biological clock”. To completely deserve this appellation, the system has to fulfill the following specifications :
We will base our project on an already existing structure, partly fulfilling the evoked specifications: the system that leads to the production of E. coli flagella.
MotivationsFIFOFirst In First Out (FIFO) systems are present everywhere from flux management or electronics to genetic networks. A queue in front of the post office works as a FIFO. More generally, it is interesting in any process that requires several steps in a defined order. FIFO behavior indeed prevents from needlessly performing the first steps while the last ones are OFF. If you want to make French fries you need to produce potatoes before you can cut them and you need to cut them before frying them. But it would be a waste to continue producing potatoes if you've already turned off the fryer :-) You would accumulate unprocessed intermediates! The same goes for the bacterium flagella. To be efficient they naturally need to produce the proteins of the base first. But when you stop making flagella, the base proteins are also the first thing you need to stop producing. It has been proposed (Alon, ...) that the gene network controlling the production of E.coli flagellum behaves as a FIFO. We thus decided to use this regulatory network to implement our FIFO. For a detailed description of E.Coli flagellum regulatory network, please go here OscillationsGenetic oscillators based on the interaction of a small set of molecular components have been shown to be involved in the regulation of the cell cycle, the circadian rhythms, or the response of several signaling pathways. Uncovering the functional properties of such oscillators then becomes important for the understanding of these cellular processes and for the characterization of fundamental properties of more complex clocks. Challenge for synthetic biologyMany oscillators, different properties : number of cycles, period, robustness. Our oscillator has an original structure (based on FFL network) Oscillating FIFOThe 3 Modules |