Team:LCG-UNAM-Mexico/Simulation

From 2008.igem.org

(Difference between revisions)
Line 124: Line 124:
                   <span class="bodyText">With the aim of predicting the behavior of the system, the biochemical reactions were  implemented in the SimBiology package of MATLAB, using the previously  <a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Parameters">defined parameters</a>.  Simulations were run for different values of the initial concentration  of AHL and Ni<sub>total</sub> (Ni<sub>int</sub> + Ni<sub>ext</sub>) which are the metabolites that we  can directly manipulate in our experiments. A parameter scan was also  run for some parameters to understand their influence on the system.</span><br>
                   <span class="bodyText">With the aim of predicting the behavior of the system, the biochemical reactions were  implemented in the SimBiology package of MATLAB, using the previously  <a href="https://2008.igem.org/Team:LCG-UNAM-Mexico/Parameters">defined parameters</a>.  Simulations were run for different values of the initial concentration  of AHL and Ni<sub>total</sub> (Ni<sub>int</sub> + Ni<sub>ext</sub>) which are the metabolites that we  can directly manipulate in our experiments. A parameter scan was also  run for some parameters to understand their influence on the system.</span><br>
                     <span class="bodyText">In order to gain insights into the system dynamics to  elucidate the conditions needed to get the desired behavior, we performed a series of analyses on it: sensitivity analysis allowed us  to identify critical parameters that needed to be defined on the most  stringent way. Basis for the (right) null and left null space were  calculated to obtain information about the general network behavior.  Steady-states were calculated by numerical integration of the  non-linear ODEs system. Finally the Jacobian of the system was  calculated around the steady-states. All simulations and analyses were  implemented and performed on MATLAB.</span>
                     <span class="bodyText">In order to gain insights into the system dynamics to  elucidate the conditions needed to get the desired behavior, we performed a series of analyses on it: sensitivity analysis allowed us  to identify critical parameters that needed to be defined on the most  stringent way. Basis for the (right) null and left null space were  calculated to obtain information about the general network behavior.  Steady-states were calculated by numerical integration of the  non-linear ODEs system. Finally the Jacobian of the system was  calculated around the steady-states. All simulations and analyses were  implemented and performed on MATLAB.</span>
-
                     <p> <span class="style2">Simulation and parameter scan</span><br>
+
                     <p> <span class="style2"><a name="SimulationParameterScan"></a>Simulation and parameter scan</span><br>
             <br>
             <br>
             <span class="bodyText">Describir el comportamiento que queremos ver y por qué.<br>
             <span class="bodyText">Describir el comportamiento que queremos ver y por qué.<br>

Revision as of 01:27, 29 October 2008

LCG-UNAM-Mexico:Modeling

Header image
iGEM 2008 TEAM
line decor
  
line decor

 
 
 
 

 
 
ribbon


Simulation & Analysis
 
With the aim of predicting the behavior of the system, the biochemical reactions were implemented in the SimBiology package of MATLAB, using the previously defined parameters. Simulations were run for different values of the initial concentration of AHL and Nitotal (Niint + Niext) which are the metabolites that we can directly manipulate in our experiments. A parameter scan was also run for some parameters to understand their influence on the system.
In order to gain insights into the system dynamics to elucidate the conditions needed to get the desired behavior, we performed a series of analyses on it: sensitivity analysis allowed us to identify critical parameters that needed to be defined on the most stringent way. Basis for the (right) null and left null space were calculated to obtain information about the general network behavior. Steady-states were calculated by numerical integration of the non-linear ODEs system. Finally the Jacobian of the system was calculated around the steady-states. All simulations and analyses were implemented and performed on MATLAB.

Simulation and parameter scan

Describir el comportamiento que queremos ver y por qué.
Incluir las gráficas de parameter scan, la gráfica de la vida, y el escaneo con el que definimos algunas constantes

Sensitivity analysis

Definir brevemente de que se trata, mostrar análisis a diferentes tiempos. Señalar los resultados que esperábamos y los que no

Stoichiometric matrix

Definir la información que contiene la matriz estequimétrica.
Definir los espacios nulos (link a wikipedia o matworld?)
Presentar las bases calculadas y una interpretación concisa

Steady-states

Definir estado estacionario, decir algo de la complejidad del problema y justificar la estrategia elegida (aproximación numérica)

Presentar la solución ontenida.

Jacobian

Definición general del jacobiano (link a wikipedia o mathworld?). Definición en redes bioquímicas.
Presentar el método para calcularlo y las matrices modales, junto con su interpretación y las escalas de tiempo.
Si da tiempo poner algo de análiss de estabilidad del estado estacionario (lo más probable s que no sea estable).

Back to top Modeling the systemParameters & kinetics

ribbon