Team:iHKU/home

From 2008.igem.org

(Difference between revisions)
(New page: <html> <style> #content{ padding:0px; } table{ background-color: transparent; } p { font-family: Calibri; font-size: 13px; } p:first-letter { color:#990000; font-size:x-large; } h1 { font-...)
 
(31 intermediate revisions not shown)
Line 1: Line 1:
<html>
<html>
<style>
<style>
 +
body{
 +
background-color: black;
 +
}
#content{
#content{
padding:0px;
padding:0px;
 +
width:975px;
}
}
table{
table{
Line 12: Line 16:
font-size: 13px;
font-size: 13px;
}
}
-
p:first-letter
+
p.special:first-letter
{
{
color:#990000;
color:#990000;
Line 38: Line 42:
#main
#main
{
{
-
width:965px;
+
width:975px;
-
         background-image:url(https://static.igem.org/mediawiki/2008/9/98/Bg.jpg);
+
         background-image:url(https://static.igem.org/mediawiki/2008/1/19/Bg_new.jpg);
         float:left;
         float:left;
}
}
#up1
#up1
{
{
-
width:965px;
+
width:975px;
height:25px;
height:25px;
background-image:url(https://static.igem.org/mediawiki/2008/d/d7/Up1.gif);
background-image:url(https://static.igem.org/mediawiki/2008/d/d7/Up1.gif);
Line 51: Line 55:
#down1
#down1
{
{
-
width:965px;
+
width:975px;
float:left;
float:left;
}
}
Line 69: Line 73:
width:230px;
width:230px;
height:600px;
height:600px;
 +
        background-image:url(https://static.igem.org/mediawiki/2008/8/8b/Leftside.jpg);
}
}
#left_extend
#left_extend
Line 79: Line 84:
#down1right
#down1right
{
{
-
width:700px;
+
width:745px;
float:left;
float:left;
}
}
Line 89: Line 94:
#rightside
#rightside
{
{
-
width:20px;
+
width:40px;
-
         float:left;
+
height:700px;
 +
         float:right;
 +
        background-image:url(https://static.igem.org/mediawiki/2008/7/7e/Rightside.jpg);
}
}
#rightsidepic
#rightsidepic
{
{
-
width: 20px;
+
width: 40px;
height: 746px;
height: 746px;
background-image:url(https://static.igem.org/mediawiki/2008/7/7e/Rightside.jpg);
background-image:url(https://static.igem.org/mediawiki/2008/7/7e/Rightside.jpg);
Line 100: Line 107:
#right_extend
#right_extend
{
{
-
width:20px;
+
width:40px;
background-image:url(https://static.igem.org/mediawiki/2008/6/6b/Rightext.jpg);
background-image:url(https://static.igem.org/mediawiki/2008/6/6b/Rightext.jpg);
}
}
Line 130: Line 137:
float:left;
float:left;
}
}
 +
#Layer1 {
 +
position: absolute;
 +
width: 523px;
 +
height: 654px;
 +
z-index: 1;
 +
left: 346px;
 +
top: 298px;
 +
        }
</style>
</style>
 +
  <style> 
 +
  <!-- 
 +
  a:link 
 +
  { 
 +
  color:#3366CC;
 +
  text-decoration:none 
 +
  } 
 +
  a:visited 
 +
  {
 +
  color:#FF6600;
 +
  text-decoration:none 
 +
  } 
 +
  a:hover 
 +
  { 
 +
  color:#66CCFF;text-decoration:underline 
 +
  } 
 +
  --> 
 +
  </style>
 +
<script src="http://web.hku.hk/~h0399999/igem/AC_RunActiveContent.js" type="text/javascript"></script>
 +
<script language="javascript">
 +
            function DisplayIframe(){
 +
                document.getElementById('ContentIfarme').style.display = "";
 +
            }
 +
           
 +
            setInterval("DisplayIframe()", 2000);
 +
        </script>
<div id="main">
<div id="main">
<div id="up1">
<div id="up1">
-
  <table width="100%" border="0">
+
<table width="100%" border="0">
         <tr>
         <tr>
-
           <th width="50%" scope="row">&nbsp;</th>
+
           <th width="61%" scope="row">&nbsp;<a name="top" id="p10"></a></th>
-
           <td width="50%"><span class="style3"><a href="http://www.hku.hk/">The University of Hong Kong</a> | <a href="http://www.hku.hk/facmed/">The Faculty of Medicine</a></span></td>
+
           <td width="39%"><span class="headline"><a href="http://www.hku.hk">The University of Hong Kong</a> | <a href="http://www.hku.hk/facmed/">Li Ka Shing Faculty of Medicine</a></span></td>
         </tr>
         </tr>
       </table>
       </table>
</div>
</div>
-
<div id="down1">
+
            <div id="down1">
 +
                <div id="Layer1">
 +
<iframe src="http://web.hku.hk/~h0399999/igem/content.html" width="550" height="600" scrolling="no" style="border:0; display:none" frameborder="0" allowtransparency="yes" id="ContentIfarme">
 +
                  </iframe>
 +
              </div>
     <div id="down1left">
     <div id="down1left">
Line 154: Line 199:
                         <tr>
                         <tr>
                           <th width="5%" scope="row">&nbsp;</th>
                           <th width="5%" scope="row">&nbsp;</th>
-
                           <td width="90%"><a href="home.html"><img src="/wiki/images/4/44/Button_home.jpg" width="200" height="25" /></a></td>
+
                           <td width="90%"><a href="/Team:iHKU/home"><img src="/wiki/images/4/44/Button_home.jpg" width="200" height="25" /></a></td>
                           <td width="5%">&nbsp;</td>
                           <td width="5%">&nbsp;</td>
                         </tr>
                         </tr>
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="team.html"><img src="/wiki/images/9/9f/Button_team.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/team"><img src="/wiki/images/9/9f/Button_team.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="design.html"><img src="/wiki/images/1/12/Button_design.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/design"><img src="/wiki/images/1/12/Button_design.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="modelling.html"><img src="/wiki/images/9/9f/Button_model.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/modeling"><img src="/wiki/images/9/9f/Button_model.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="result.html"><img src="/wiki/images/c/cc/Button_result.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/result"><img src="/wiki/images/c/cc/Button_result.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="software.html"><img src="/wiki/images/7/70/Button_software.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/software"><img src="/wiki/images/7/70/Button_software.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="design.html"><img src="/wiki/images/6/6c/Button_devices.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/device"><img src="/wiki/images/6/6c/Button_devices.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="biobrick.html"><img src="/wiki/images/f/f0/Button_biobrick.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/biobrick"><img src="/wiki/images/f/f0/Button_biobrick.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
                         <tr>
                         <tr>
                           <th scope="row">&nbsp;</th>
                           <th scope="row">&nbsp;</th>
-
                           <td><a href="Protocol.html"><img src="/wiki/images/f/f2/Button_protocol.jpg" width="200" height="25" /></a></td>
+
                           <td><a href="/Team:iHKU/protocol"><img src="/wiki/images/f/f2/Button_protocol.jpg" width="200" height="25" /></a></td>
                           <td>&nbsp;</td>
                           <td>&nbsp;</td>
                         </tr>
                         </tr>
Line 221: Line 266:
             <div id="header"></div>
             <div id="header"></div>
         <div id="content1">
         <div id="content1">
-
               
+
                                            <table width="100%" border="0" align="center">
 +
                                <tr>
 +
                                    <th height = "250" width="10%">&nbsp;
 +
                                       
 +
                                    </th>
 +
                                    <td>
 +
                                        <script type="text/javascript">
 +
AC_FL_RunContent( 'codebase','http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0','width','553','height','819','src',"https://static.igem.org/mediawiki/2008/f/ff/Home.swf",'quality','high','pluginspage','http://www.macromedia.com/go/getflashplayer','movie',"https://static.igem.org/mediawiki/2008/f/ff/Home",'wmode','transparent' ); //end AC code
 +
</script><noscript><object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0" width="553" height="819">
 +
                                            <param name="movie" value="https://static.igem.org/mediawiki/2008/f/ff/Home.swf" /><param name="quality" value="high" /><PARAM NAME=wmode value=transparent>
 +
                                            <embed src="https://static.igem.org/mediawiki/2008/f/ff/Home.swf" quality="high" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" width="553" height="819">
 +
                                            </embed>
 +
                                        </object></noscript>
 +
                                    </td>
 +
                                    <td width="10%">&nbsp;
 +
                                       
 +
                                    </td>
 +
                                </tr>
 +
                            </table>
 +
<p align="center" class="style12"><img src="https://static.igem.org/mediawiki/2008/8/88/Beautiful_HKU.jpg" alt="Main Building, The University of Hong Kong" width="500" height="285"></p>
 +
 
           <table width="100%" border="0">
           <table width="100%" border="0">
-
                      <tr>
+
                         <tr>
-
                         <th height = "250" width="10%">&nbsp;</th>
+
-
                        <td width="80%" align="center"><img src="/wiki/images/a/a4/Intropic.jpg" /></td>
+
-
                        <td width="10%">&nbsp;</td>
+
-
                      </tr>
+
-
                      <tr>
+
                       <th width="10%">&nbsp;</th>
                       <th width="10%">&nbsp;</th>
-
                         <td width="80%" align="left"><h1 class="style7">The Legend</h1>
+
                         <td width="80%" align="left"><h3 align="center"><u>Formation of new patterns</u></h3><h3 align="center">by</h3> <h3 align="center"><u>programming  cell motility</u></h3><br>
-
                          <p class="style12">&quot;It all began with the forming of the magic  Coli rings. Three were given to the eleven Coli Kings, noblest and fairest of  all Coli-beings. Seven were given to the dwarf Colis, great miners who live in  there Halls of Agar. And nine, nine rings were given to Mortal Colis, who above  all desire power. But they were all of them deceived, for the Dark Coli Lord in  secret formed a master Coli ring! One ring rule them all. One by one the Colis  fell into the control of Dark Coli Lord. But there were some who resisted it.  In a great battle the Dark Coli Lord was ultimately defeated and the Coli rings  were lost. Time passes by, history becomes legend, legend becomes myth. When  the master Coli ring had passed out from almost all knowledge, it was then  picked up by someone who the Colis would never have expected: a group of human  from HKU!<br />
+
 
-
                        The Coli ring itself was a book of history.  In it the human learnt about the great Coli rings of the past and that great  battle which had already faded into the years and nowhere else be found. It was  said that those who are able to collect the entire set of magic Coli rings can  fulfill any hopes that they wish. Influenced by the magic of the master Coli  ring, the human and his fellow set out to search for the rest magic Coli  rings…… &quot;</p>
+
                                                    <h1 class="style7">Abstract</h1>
-
                          <p class="style12">(Modified from script of The Lord of the Rings: The  Fellowship of the Ring)</p>
+
                           <p class="special">The ability of living organisms to form patterns is an untapped resource for synthetic biology. The HKU iGEM2008 team aims to generate unique patterns by rewiring the genetic circuitry controlling cell motility. Specifically, E. coli cells are programmed to autonomously regulate their movement by sensing local cell density. Interesting patterns are formed by two types of newly engineered cells. The low-density mover cells spread outwards and spontaneously form a distinctive ring of low cell density surrounded by rings of high cell density whilst the high-density mover cells form a Mt.Fuji-like structure. Moreover, we build a theoretical model that satisfactorily fits our current experimental data, and also predicts some parameters which may significantly affect the ring formation. The study of this self-organized spatial distribution of cells helps us to understand principles underlying the formation of natural biological patterns, and synthetic non-natural patterns have various potential applied uses.</p>
-
                          <p class="style12">&nbsp;</p>
+
<p align="right"><a href="#top">[Back to top]</a></p><br>
-
                          <h1 class="style7">Abstract</h1>
+
-
                           <p>The ability of living organisms to form patterns is an untapped resource for synthetic biology. The HKU iGEM2008 team aims to generate unique patterns by rewiring the genetic circuitry controlling cell motility. Specifically, <em>E. coli</em> cells are programmed to autonomously regulate their movement by sensing local cell density. Interesting patterns are formed by two types of newly engineered cells. The high cell-density motility-off cells spread outwards and spontaneously form a distinctive ring of low cell density surrounded by rings of high cell density whilst the high cell-density motility-on cells form a Fuji-mountain-like structure. Moreover, we build a theoretical model that satisfactorily fits our current experimental data, and also predicts some parameters which may significantly affect the ring formation. The study of this self-organized spatial distribution of cells helps us to understand principles underlying the formation of natural biological patterns, and synthetic non-natural patterns have various potential applied uses</p>
+
                           <p class="style12">&nbsp;</p>
                           <p class="style12">&nbsp;</p>
                           <h1 class="style7">Overview</h1>
                           <h1 class="style7">Overview</h1>
-
                         <p>iGEM2008 iHKU team aims to deliver you the most brilliant project this year. We come from departments of Biochemistry, Bioinformatics, Physics, and Chemistry. With different backgrounds and modalities of thought, we complement each other in developing new ideas, and in following  wet/dry lab work (<strong><u><a href="team&amp;abs.html">Team</a></u></strong>). <br />
+
                         <p class="special">The iGEM2008 iHKU team aims to  deliver a brilliant project this year. We major in multiple disciplines  including Biochemistry, Bioinformatics, Physics, and Chemistry. Using our  different backgrounds and modalities of thought, we complement each other in developing new ideas, and in carrying out wet/dry lab work (<a href="https://2008.igem.org/Team:iHKU/team">Team</a>). <br />
-
Pattern formation is one of the most common yet fascinating biological phenomena happening in our daily lives, though for centuries, biologists, physicists and mathematicians have struggled to understand its nature. How do highly ordered patterns arise from a few living cells? How can our hands, our eyes, our bones form their shape with such an extremely low mistake rate? This question is fascinating but crucial. Bacteria use their flagella to move around. To generate a recognizable and stable pattern, bacterial motility must be controlled and coordinated. This can be accomplished by designing a genetic circuits coupling bacterial quorum sensing system and genes controlling mobility. There are several key genes responsible for the movement of flagella, two of them are <em>cheY</em> and <em>cheZ</em>. CheY protein has two forms: its phosphorylated form makes flagella rotate clockwise and the cell will tumble; its dephosphorylated form makes flagella rotate counterclockwise and the cell will be driven straight in one direction (run). CheZ protein can help the progress of dephosphorylation of protein cheY. <br />
+
Pattern formation is one of the most common yet fascinating biological phenomena happening in our daily lives, though for centuries, biologists, physicists and mathematicians have struggled to understand its nature. How do highly ordered patterns arise from a few living cells? How can our hands, our eyes, our bones form their shape with such low error rates? These questions are fascinating and crucial. The fundamental  elements in biological pattern formation are cell growth, cell movement,  cell-cell communication, and differential gene expression. In this project, we  aim to form new patterns by controlling cell movement, using a single strain of engineered bacteria. Bacterium<em> E. coli </em>was chosen as our  model system. <em>E. coli </em>cells use their flagella to move around. To generate a recognizable and stable pattern, bacterial motility must be controlled and coordinated. This can be accomplished by designing genetic circuits coupling bacterial quorum sensing system and genes controlling mobility. There are several key genes responsible for the movement of flagella, two of them are <em>cheY</em> and <em>cheZ</em>. CheY protein has two forms: its phosphorylated form makes flagella rotate clockwise and the cell will tumble; its dephosphorylated form makes flagella rotate counterclockwise and the cell will be driven straight in one direction (run). The CheZ protein is involved in  dephosphorylation of protein CheY. It is known in the literature that cells are immobile in the absence of CheZ.<br />
-
By rewiring the genetic circuitry controlling cell motility, we aim to generate unique patterns (<strong><u><a href="design.html">Design</a></u></strong>). First, we applied the method of Recombineering to delete <em>cheZ</em> gene in chromosome of wild type <em>E.coli</em> strain, MG1655 (<strong><u><a href="Protocol.html">Protocols</a></u></strong>). And then, a series of biobricks and strains were successfully constructed (<strong><u><a href="design.html">Plasmids and strains</a></u></strong>). As expected, fantastic patterns were fortunately observed (<strong><u><a href="result.html">Results</a></u></strong>),  including Fuji-mount like and ring-like pattern. Since the ring-like pattern is  so charming, our rest work mainly focused on the characterization and modeling of this pattern. The modeling…. (<strong><u><a href="modelling.html">Modeling</a></u></strong>). Modeling and experimental data indicated some factors might significantly affect the  development of ring-like pattern. By measuring these factors, we provided not only solid data to support our hypothesis of modeling, but values of parameters to maturate it (<strong><u><a href="result.html">Results</a></u></strong>).? As a result, it’s surprising that we achieve two-ring pattern by slightly tuning the genetic circuitry (<strong><u><a href="result.html">Results</a></u></strong>). <br />
+
By rewiring the genetic circuitry that controls cell motility, we aim to generate unique patterns (<a href="https://2008.igem.org/Team:iHKU/design">Design</a>). First, we applied the method of Recombineering to delete the <em>cheZ</em> gene in chromosome of wild type <em>E. coli </em>strain, MG1655 (<a href="https://2008.igem.org/Team:iHKU/protocol">Protocols</a>). Then, a series of biobricks and strains were successfully constructed (<a href="https://2008.igem.org/Team:iHKU/design">Plasmids and strains</a>), to (i) import the quorum sensing system of Vibrio fischeri and (2) control the expression of cheZ by quorum sensing, either positively or negatively. As expected, interesting patterns were observed (<a href="#">Results</a>),  such as Mt.Fuji-like and ring of void patterns, when cells are seeded on low density agar plates. Since the ring-like patterns are so counterintuitive -- they formed despite cell growth and diffusion, our remaining work mainly focused on the characterization and modeling of these patterns. <br />
-
During the experiments, we have encountered uncountable difficulties. To overcame them, we have created several NOVEL protocols, software, and devices with the help of our knowledge from different fields, such as “<em>growth curve on agar plate” </em>(<strong><u><a href="Protocol.html">Protocols</a> </u></strong>), <em>“movie taker” , </em>and<em> “reflection spectrophotometer”</em> (<strong><u><a href="device.html">Novel devices</a></u></strong>). We believe more researchers will benefit from our inventions. <br />
+
Considering <em>E.  coli</em> movement as a random walk, a coarse-grained model was used to describe the basic cell motility in response to AHL (the quorum sensor) synthesized by the cells. Our model is  based on time dependent partial differential equations including the effect of  cell random walk, cell growth, AHL diffusion, AHL synthesis and degradation,  and nutrient diffusion and consumption. (<a href="https://2008.igem.org/Team:iHKU/modelling">Modeling</a>). Analysis of the model suggests a basic mechanism underlying the formation of the intriguing trough-like patterns: regions of low cell density are formed by cells being sucked to neighboring high density regions as the engineered cells move randomly at low density and become immobile
-
Last but not least, in this project, we created 15 biobricks and characterized 1 existed  biobrick (<strong><u><a href="biobrick.html">Characterization</a></u></strong>), which are considered to  be helpful to coming iGEM competitions and the study of synthetic biology.<br />
+
at high density. Our simulation indicated some factors might significantly affect the  development of ring-like patterns, such as the growth rate of the cell which  was also observed in the experiments. By measuring these factors, we provide not only solid data to support our hypothesis for our model, but also the  values of the parameters involved (<a href="#">Results</a>). As a result, we were able to achieve a double-ring pattern by modifying the cooperativity of the response to AHL upon adding positive feedback to the genetic circuit. (<a href="#">Results</a>). <br />
-
Everybody of us cherish  this invaluable opportunity to work together to improve communication and complementarity,  and finally to fulfill our dream in iGEM2008! </p>
+
During the experiments, we encountered numerous challenges and difficulties. To overcome them, we created several NOVEL protocols, software, and devices with the help of our knowledge from different fields, such as “<em>growth curve on agar plate” </em>(<a href="https://2008.igem.org/Team:iHKU/protocol">Protocols</a>), <em>“movie taker”, </em>and<em> “reflection spectrophotometer”</em> (<strong><u><a href="https://2008.igem.org/Team:iHKU/device">Novel devices</a></u></strong>). We believe more researchers will benefit from our inventions. <br />
-
                        <p>&nbsp;</p>
+
Last but not least, in this project, we created 15 biobricks and characterized one existing biobrick (<strong><u><a href="https://2008.igem.org/Team:iHKU/biobrick">Characterization</a></u></strong>), which are considered to  be helpful to future iGEM competitions and the study of synthetic biology.</p>                        <p>&nbsp;</p>
 +
<p align="right"><a href="#top">[Back to top]</a></p>                      
 +
<p>&nbsp;</p>
                         <p>&nbsp;</p>
                         <p>&nbsp;</p>
 +
<h1>Acknowledgement</h1>
 +
<p class="special">We thank Dr LingChong You, California Institute of Technology, for providing the plasmid pluxRI2, and thank Dr Ron Weiss, Princeton University, for providing the plasmid pLD.</p><br><br>
 +
 +
<h1>Sponsors</h1>
 +
 +
                        <table width="534" border="0">
 +
                          <tr>
 +
                            <td width="304"><a href="http://www.hku.hk/"><img src="/wiki/images/b/b9/Hku_logo.gif" width="210" height="39"></a></td>
 +
                            <td width="214"><div align="left"><a href="http://www.hku.hk/facmed/index.html"><img src="/wiki/images/e/e8/Faculty_Logo.gif" width="210" height="39"></a></div></td>
 +
                          </tr>
 +
                          <tr>
 +
                            <td><a href="http://www.hku.hk/biochem/"><img src="/wiki/images/6/64/Biochem_logo.jpg" width="210" height="39"></a></td>
 +
                            <td><a href="http://www.croucher.org.hk/"><img src="/wiki/images/7/76/Fund_logo.gif" width="210" height="39"></a></td>
 +
                          </tr>
 +
                        </table>
                         <p>&nbsp;</p>
                         <p>&nbsp;</p>
                         <p>&nbsp;</p></td>
                         <p>&nbsp;</p></td>
Line 258: Line 333:
             <div id="footer1"></div>
             <div id="footer1"></div>
         </div>
         </div>
-
           
+
                <div id="rightside">
 +
           
 +
        </div>   
         </div>
         </div>
     </div>
     </div>
</div>
</div>
</html>
</html>
 +
<html>

Latest revision as of 10:16, 30 October 2008

   

Main Building, The University of Hong Kong

 

Formation of new patterns

by

programming cell motility


Abstract

The ability of living organisms to form patterns is an untapped resource for synthetic biology. The HKU iGEM2008 team aims to generate unique patterns by rewiring the genetic circuitry controlling cell motility. Specifically, E. coli cells are programmed to autonomously regulate their movement by sensing local cell density. Interesting patterns are formed by two types of newly engineered cells. The low-density mover cells spread outwards and spontaneously form a distinctive ring of low cell density surrounded by rings of high cell density whilst the high-density mover cells form a Mt.Fuji-like structure. Moreover, we build a theoretical model that satisfactorily fits our current experimental data, and also predicts some parameters which may significantly affect the ring formation. The study of this self-organized spatial distribution of cells helps us to understand principles underlying the formation of natural biological patterns, and synthetic non-natural patterns have various potential applied uses.

[Back to top]


 

Overview

The iGEM2008 iHKU team aims to deliver a brilliant project this year. We major in multiple disciplines including Biochemistry, Bioinformatics, Physics, and Chemistry. Using our different backgrounds and modalities of thought, we complement each other in developing new ideas, and in carrying out wet/dry lab work (Team).
Pattern formation is one of the most common yet fascinating biological phenomena happening in our daily lives, though for centuries, biologists, physicists and mathematicians have struggled to understand its nature. How do highly ordered patterns arise from a few living cells? How can our hands, our eyes, our bones form their shape with such low error rates? These questions are fascinating and crucial. The fundamental elements in biological pattern formation are cell growth, cell movement, cell-cell communication, and differential gene expression. In this project, we aim to form new patterns by controlling cell movement, using a single strain of engineered bacteria. Bacterium E. coli was chosen as our model system. E. coli cells use their flagella to move around. To generate a recognizable and stable pattern, bacterial motility must be controlled and coordinated. This can be accomplished by designing genetic circuits coupling bacterial quorum sensing system and genes controlling mobility. There are several key genes responsible for the movement of flagella, two of them are cheY and cheZ. CheY protein has two forms: its phosphorylated form makes flagella rotate clockwise and the cell will tumble; its dephosphorylated form makes flagella rotate counterclockwise and the cell will be driven straight in one direction (run). The CheZ protein is involved in dephosphorylation of protein CheY. It is known in the literature that cells are immobile in the absence of CheZ.
By rewiring the genetic circuitry that controls cell motility, we aim to generate unique patterns (Design). First, we applied the method of Recombineering to delete the cheZ gene in chromosome of wild type E. coli strain, MG1655 (Protocols). Then, a series of biobricks and strains were successfully constructed (Plasmids and strains), to (i) import the quorum sensing system of Vibrio fischeri and (2) control the expression of cheZ by quorum sensing, either positively or negatively. As expected, interesting patterns were observed (Results), such as Mt.Fuji-like and ring of void patterns, when cells are seeded on low density agar plates. Since the ring-like patterns are so counterintuitive -- they formed despite cell growth and diffusion, our remaining work mainly focused on the characterization and modeling of these patterns.
Considering E. coli movement as a random walk, a coarse-grained model was used to describe the basic cell motility in response to AHL (the quorum sensor) synthesized by the cells. Our model is based on time dependent partial differential equations including the effect of cell random walk, cell growth, AHL diffusion, AHL synthesis and degradation, and nutrient diffusion and consumption. (Modeling). Analysis of the model suggests a basic mechanism underlying the formation of the intriguing trough-like patterns: regions of low cell density are formed by cells being sucked to neighboring high density regions as the engineered cells move randomly at low density and become immobile at high density. Our simulation indicated some factors might significantly affect the development of ring-like patterns, such as the growth rate of the cell which was also observed in the experiments. By measuring these factors, we provide not only solid data to support our hypothesis for our model, but also the values of the parameters involved (Results). As a result, we were able to achieve a double-ring pattern by modifying the cooperativity of the response to AHL upon adding positive feedback to the genetic circuit. (Results).
During the experiments, we encountered numerous challenges and difficulties. To overcome them, we created several NOVEL protocols, software, and devices with the help of our knowledge from different fields, such as “growth curve on agar plate” (Protocols), “movie taker”, and “reflection spectrophotometer” (Novel devices). We believe more researchers will benefit from our inventions.
Last but not least, in this project, we created 15 biobricks and characterized one existing biobrick (Characterization), which are considered to be helpful to future iGEM competitions and the study of synthetic biology.

 

[Back to top]

 

 

Acknowledgement

We thank Dr LingChong You, California Institute of Technology, for providing the plasmid pluxRI2, and thank Dr Ron Weiss, Princeton University, for providing the plasmid pLD.



Sponsors