Revision as of 22:02, 29 October 2008 by Philippe b (Talk | contribs)

Un petit texte pour expliquer la motivation de cette page ne serait-ce que tout simplement: On this page we report some possible uses of the FIFO device in synthetic applications.

General comment: I am not at all against an explorative, speculative section. But it's purpose must be clear very clearly focussed on the interest of the FIFO for putative applications. Discuss each time why the FIFO could be especially interesting for your application. This must be very clear in order for this section to fulfill it's purpose.

Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways

Human overpopulation combined with the current lifestyle urges the rational, efficient, and sustainable use of natural resources to produce environmentally friendly plastic materials such as polyhydroxyalkanoic acids (PHAs), whose production/degradation cycle reduces undesirable wastes and emissions. Our study is a new metabolic strategy to generate PHA-hyperproducer strains, that have the properties to be a sequential metabolic pathway, we believe the sequential expression may increases the production of purified PHA.

Our strategy consists on replacing the RFP,CFP and YFP genes by the PhaA ,PhaB and PhaC genes in our final system (containing oscillation,FIFO,synchronisation modules).

This strategy is more efficient than a constitutive activation for 3 main reasons:

  • First, in this application the NADPH, which is a cellular metastable fuel, is used by the PhaB to synthesize bioplastic. This molecule is very important for many metabolic pathways in bacteria. A NADPH recuperation step is then needed to ensure other metabolic activities to go on. We can then make the hypothesis that if the PhaB is always activated the bacteria will get exhausted and die quickly. In our system, the bacteria will have a NADPH recuperation step, this is why we hope bacteria will live more than in an usual chemoreactor.
  • Secondly, we hope by the order of the FIFO to make a synchronized and sequential expression in order to increase the rate of the PHA biosynthesis.
  • Third, as the quality of the bioplastic increases with time, we could predict the quality of the final product since we would know the duration of a production cycle thanks to the periodicity of our system.

Again, you cannot just state this boldly without constructing an argument.

You never explain why your system is better than simply expressing all the genes continuously at a lower level

More generally, on this whole page: We don't expect you to give very detailed projects. You just need to give simple ideas for which the interest of the FIFO seems obvious (or at least you need to try making it seem obvious). We are not so much interested in the precise mechanisms or genes involved, but rather in the principles that make your projects interesting.



  • Folding DNA to create nanoscale shapes and patterns

Paul W. K. Rothemund

  • Design of DNA origami

Paul W. K. Rothemund

  • An autonomous polymerization motor powered by DNA hybridization.

Suvir Venkataraman, Robert M. Dirks, Paul W. K. Rothemund, Erik Winfree, Niles A. Pierce.

  • Catalyzed Relaxation of a Metastable DNA Fuel.

Georg Seelig, Bernard Yurke, Erik Winfree.