UCSF Higher-Order Systems

From 2008.igem.org

(Difference between revisions)
Line 1: Line 1:
 +
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Untitled Document</title>
<title>Untitled Document</title>
-
</head>
+
<style type="text/css">
-
 
+
<!--
 +
body {
 +
margin-left: 20px;
 +
margin-right: 20px;
 +
width: 900px;
 +
}
 +
-->
 +
</style></head>
<body>
<body>
-
<p>&nbsp;</p>
+
<p align="center"><img src="../Desktop/UCSF2008logo1.png" width="276" height="288" align="middle" /></p>
-
<table width="730" border="0" cellpadding="3">
+
<h1  align="center">CHROMATIN MEMORIES</h1>
-
  <tr>
+
<p align="center">__________________________________________________________________________________________________</p>
-
    <td width="346"><h3>OUR TEAM</h3>
+
<blockquote>
-
    <p>Synthetic bit</p>
+
  <blockquote>
-
    <p>&nbsp;</p></td>
+
      <h2 align="left">Epigenetic control of gene expression</h2>
-
    <td width="366"><div align="center"><a href="http://www.google.com"><img src="https://static.igem.org/mediawiki/2008/0/0e/UCSF2008logo2.jpg" width="200" height="200" /></div></td>
+
      <p align="left">The cells of higher eukaryotes utilize chromatin state to encode &quot;permanent&quot; epigenetic changes in gene expression.  For example, signals received by a cell during the course of development can induce the partitioning of the genome into accessible (euchromatin) and inaccessible (heterochromatin) regions that specify the fate of that cell.  This epigenetic profile, in which blocks of gene are &quot;silenced&quot; by heterochromatin, is stably maintained and inherited by daughter cells.  Thus, chromatin state provides a higher level of gene expression control that is regional (acting on many genes at once), dominant over transcription factors, ultra-cooperative (all or none), and highly stable (memory).  Engineerable control over chromatin state would clearly be a powerful tool for Synthetic Biology.  We have constructed and characterized a synthetic silencing system in <em>S. cerevisiae</em> in which we can inducibly silence specific loci in the genome. This foundational technology will facilitate the construction of complex genetic circuits with memory, and has potential application in the engineering of cell differentiation in higher eukaryotes.</p>
-
  </tr>
+
    <p align="right"><a href="#">More...</a></p>
-
  <tr>
+
      <p align="right">&nbsp;</p>
-
    <td><h3>OUR PROJECT</h3></td>
+
      <table width="870" border="0" cellpadding="3">
-
    <td>&nbsp;</td>
+
        <tr>
-
  </tr>
+
          <td width="202" height="208"><img src="iGEM/Jamboree/Our Project icon.jpg" alt="" width="200" height="201" /></td>
-
  <tr>
+
          <td width="650"><h3>&nbsp;</h3>
-
    <td>&nbsp;</td>
+
            <blockquote>
-
    <td>&nbsp;</td>
+
              <h3>OUR PROJECT</h3>
-
   </tr>
+
              <blockquote>
-
</table>
+
                <h4>Project Summary</h4>
 +
                <h4>Synthetic Chromatin Bit</h4>
 +
                <ul>
 +
                  <ul>
 +
                    <li>Design</li>
 +
                    <li>Properties</li>
 +
                    <li>Higher-Order Systems</li>
 +
                    <li>FAQs          </li>
 +
                  </ul>
 +
                </ul>
 +
              </blockquote>
 +
            </blockquote>
 +
          <p>&nbsp;</p></td>
 +
        </tr>
 +
      </table>
 +
      <table width="870" border="0" cellpadding="3">
 +
        <tr>
 +
          <td width="202" height="208"><img src="iGEM/Jamboree/Our Team icon.jpg" alt="" width="200" height="200" /></td>
 +
          <td width="650"><h3>&nbsp;</h3>
 +
              <blockquote>
 +
                <h3>OUR TEAM</h3>
 +
                <blockquote>
 +
                  <h4>Team members</h4>
 +
                  <h4>Individual Contributions</h4>
 +
                  <h4>Notebooks</h4>
 +
                  <h4>Resources</h4>
 +
                  <h4>FAQs</h4>
 +
                </blockquote>
 +
              </blockquote>
 +
          <p>&nbsp;</p></td>
 +
        </tr>
 +
      </table>
 +
      <p align="justify">&nbsp;</p>
 +
      <p align="left">&nbsp;</p>
 +
      <p align="left">&nbsp;</p>
 +
      <blockquote>
 +
          <p align="left">&nbsp;</p>
 +
      </blockquote>
 +
        <p align="left">&nbsp;</p>
 +
   </blockquote>
 +
  </blockquote>
 +
</blockquote>
 +
</blockquote>
</body>
</body>
</html>
</html>

Revision as of 01:53, 24 October 2008

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> Untitled Document

CHROMATIN MEMORIES

__________________________________________________________________________________________________

Epigenetic control of gene expression

The cells of higher eukaryotes utilize chromatin state to encode "permanent" epigenetic changes in gene expression. For example, signals received by a cell during the course of development can induce the partitioning of the genome into accessible (euchromatin) and inaccessible (heterochromatin) regions that specify the fate of that cell. This epigenetic profile, in which blocks of gene are "silenced" by heterochromatin, is stably maintained and inherited by daughter cells. Thus, chromatin state provides a higher level of gene expression control that is regional (acting on many genes at once), dominant over transcription factors, ultra-cooperative (all or none), and highly stable (memory). Engineerable control over chromatin state would clearly be a powerful tool for Synthetic Biology. We have constructed and characterized a synthetic silencing system in S. cerevisiae in which we can inducibly silence specific loci in the genome. This foundational technology will facilitate the construction of complex genetic circuits with memory, and has potential application in the engineering of cell differentiation in higher eukaryotes.

More...

 

 

OUR PROJECT

Project Summary

Synthetic Chromatin Bit

    • Design
    • Properties
    • Higher-Order Systems
    • FAQs

 

 

OUR TEAM

Team members

Individual Contributions

Notebooks

Resources

FAQs