Team:Harvard/Parts

From 2008.igem.org

(Difference between revisions)
(Prototype team page)
(mtrB)
 
(97 intermediate revisions not shown)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
+
__NOTOC__
-
 
+
<html>
<html>
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
+
<head>
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
<style>
-
This is a template page. READ THESE INSTRUCTIONS.
+
table {
-
</div>
+
  background-color: #c4dbea;
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
+
  font-color: #333333;
-
You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2008.igem.org/Help:Template/Examples">HERE</a>.
+
  color:#333333;
-
</div>
+
}
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
+
a.menu {
-
You <strong>MUST</strong> have a team description page, a project abstract, a complete project description, and a lab notebook. PLEASE keep all of your pages within your Team:Example namespace. 
+
  background-color: #c4dbea;
-
</div>
+
  color: #333333;
-
</div>
+
  width: 12em;
 +
}
 +
 
 +
.firstHeading {
 +
  color:#333333;
 +
}
 +
 
 +
#bodyContent {
 +
background-color: #c4dbea;
 +
}
 +
 
 +
#content {
 +
background-color: #c4dbea;
 +
}
 +
 
 +
#footer-box {
 +
  background-color: #c4dbea;
 +
}
 +
p {
 +
  color:#333333;
 +
}
 +
body {
 +
  background-color:#333333;
 +
}
 +
.firstHeading {
 +
  display:none;
 +
}
 +
</style>
 +
</head>
</html>
</html>
-
<!-- *** End of the alert box *** -->
 
 +
{|
 +
| align="center" style="background:#c4dbea"|
 +
<html><a href = "https://2008.igem.org/Team:Harvard"><img src="https://static.igem.org/mediawiki/2008/b/b9/Harvard_logo.png"></a></html>
 +
<br>
 +
{{Template:Main}}
-
{|align="justify"
+
{| style="color:#1b2c8a;background-color:#FFF;" cellpadding="0" cellspacing="0" border="0" bordercolor="#000" width="100%" align="center"|}
-
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
+
 
-
|[[Image:Example_logo.png|200px|right|frame]]
+
<!--- body here--->
-
|-
+
{|align="justify" style="background-color:#FFFFFF;text-indent: 15pt;text-align:justify" cellpadding="50" width="90%"
|
|
-
''Tell us more about your project.  Give us background.  Use this is the abstract of your project.  Be descriptive but concise (1-2 paragraphs)''
 
-
|[[Image:Team.png|right|frame|Your team picture]]
 
-
|-
 
-
|
 
-
|align="center"|[[Team:Harvard | Team Example 2]]
 
-
|}
 
-
<!--- The Mission, Experiments --->
+
=Parts Submitted to Registry=
 +
You can find the complete list of parts we submitted to the registry [http://partsregistry.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2008&group=Harvard here].
 +
==''mtrB''==
 +
Many genes are involved in ''S. oneidensis''’s complex respiratory system (Heidelberg et al. 2002).  We focused on ''mtrB'', which encodes a 679-amino-acid-long outer membrane protein involved in the binding of metals and the localization of outer membrane cytochromes during reduction (Bretschger et al. 2007).  It is unfortunately toxic in ''E. coli'' (Saffarini).  Bretschger et al. recently characterized the role of mtrB in anaerobic respiration of ''S. oneidensis'' by looking at the effects of knock-out and complementation of mtrB on the electrical output of ''S. oneidensis''.  It was found that the strain which lacked mtrB produced less than 20% of the current generated by the wild type strain.  In complemented strains, where mtrB is expressed constitutively under the control of the lacZ promoter in the knock-out strain, the phenotype was rescued with a similar amount of current being produced to that of the wild type (Bretschger et al. 2007).  Not only does this experiment demonstrate the importance of mtrB in reduction in ''S. oneidensis'', it also suggests a mechanism by which this electrical output could be controlled.  Transforming plasmids containing mtrB under the control of an inducible promoter into mtrB knock out ''S. oneidensis'', would conceivably create a strain of ''S. oneidensis'' which could increase its electrical output in response to the turning-on of the promoter controlling mtrB expression.  The creation of a strain with an inducible electrical output could have important applications in biotechnology by creating a system which couples the ability of ''S. oneidensis'' to respond to a diverse array of stimuli with the speed and ubiquity of electricity.
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
+
Since we found construction intermediates from the registry to be especially useful, we provided our intermediates with mtrB with RBS, terminator, or both.
-
!align="center"|[[Team:Harvard|Home]]
+
-
!align="center"|[[Team:Harvard/Team|The Team]]
+
-
!align="center"|[[Team:Harvard/Project|The Project]]
+
-
!align="center"|[[Team:Harvard/Parts|Parts Submitted to the Registry]]
+
-
!align="center"|[[Team:Harvard/Modeling|Modeling]]
+
-
!align="center"|[[Team:Harvard/Notebook|Notebook]]
+
-
|}
+
-
(''Or you can choose different headings.  But you must have a team page, a project page, and a notebook page.'')
+
 +
==The Genetic Circuitry==
 +
In order to control the expression of exogenous mtrB we sought to create several different inducible systems. As depicted below, these systems consist of a repressor under the control of a constitutive promoter (blue). In the default state, the repressor will bind to the downstream promoter (red), preventing RNA polymerase from attaching to the DNA strand to start transcription. Thus, in this state, mtrB is not expressed.
 +
 +
In the presence of an inducer, mtrB expression should occur. In this case, the inducer binds the repressor protein, preventing it from binding to the operator within the promoter. RNA polymerase is therefore able to bind to the promoter (green), allowing for expression of mtrB.
 +
 +
<div style="text-indent:0pt">[[Image:Harvsystem.png|thumb|650px|center|Induction results in mtrB expression]]
 +
</div>
-
===Note===
 
-
If you choose to include a '''Parts Submitted to the Registry''' page, please list your parts here.  This is not necessary but it may be a nice list to keep track of.
+
We tried to create such systems capable of being induced by [[Team:Harvard/Parts/LacI| IPTG]],  
 +
[[Team:Harvard/Parts/Tempsenseci| heat]], [[Team:Harvard/Parts/Other| tetracycline, and light]].

Latest revision as of 03:58, 30 October 2008



Parts Submitted to Registry

You can find the complete list of parts we submitted to the registry [http://partsregistry.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2008&group=Harvard here].

mtrB

Many genes are involved in S. oneidensis’s complex respiratory system (Heidelberg et al. 2002). We focused on mtrB, which encodes a 679-amino-acid-long outer membrane protein involved in the binding of metals and the localization of outer membrane cytochromes during reduction (Bretschger et al. 2007). It is unfortunately toxic in E. coli (Saffarini). Bretschger et al. recently characterized the role of mtrB in anaerobic respiration of S. oneidensis by looking at the effects of knock-out and complementation of mtrB on the electrical output of S. oneidensis. It was found that the strain which lacked mtrB produced less than 20% of the current generated by the wild type strain. In complemented strains, where mtrB is expressed constitutively under the control of the lacZ promoter in the knock-out strain, the phenotype was rescued with a similar amount of current being produced to that of the wild type (Bretschger et al. 2007). Not only does this experiment demonstrate the importance of mtrB in reduction in S. oneidensis, it also suggests a mechanism by which this electrical output could be controlled. Transforming plasmids containing mtrB under the control of an inducible promoter into mtrB knock out S. oneidensis, would conceivably create a strain of S. oneidensis which could increase its electrical output in response to the turning-on of the promoter controlling mtrB expression. The creation of a strain with an inducible electrical output could have important applications in biotechnology by creating a system which couples the ability of S. oneidensis to respond to a diverse array of stimuli with the speed and ubiquity of electricity.

Since we found construction intermediates from the registry to be especially useful, we provided our intermediates with mtrB with RBS, terminator, or both.

The Genetic Circuitry

In order to control the expression of exogenous mtrB we sought to create several different inducible systems. As depicted below, these systems consist of a repressor under the control of a constitutive promoter (blue). In the default state, the repressor will bind to the downstream promoter (red), preventing RNA polymerase from attaching to the DNA strand to start transcription. Thus, in this state, mtrB is not expressed.

In the presence of an inducer, mtrB expression should occur. In this case, the inducer binds the repressor protein, preventing it from binding to the operator within the promoter. RNA polymerase is therefore able to bind to the promoter (green), allowing for expression of mtrB.

Induction results in mtrB expression


We tried to create such systems capable of being induced by IPTG, heat, tetracycline, and light.