Team:Harvard
From 2008.igem.org
(Difference between revisions)
(45 intermediate revisions not shown) | |||
Line 43: | Line 43: | ||
<img src="https://static.igem.org/mediawiki/igem.org/c/cc/Bactricity.jpg"> | <img src="https://static.igem.org/mediawiki/igem.org/c/cc/Bactricity.jpg"> | ||
</div> | </div> | ||
+ | |||
+ | <div style="position: absolute; left: 100px; top: 880px; height: 400px; width: 100px; padding: 1em;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2008/0/06/Thanks_border.jpg"> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <div style="position: absolute; left: 85px; top: 950px; height: 400px; width: 400px; padding: 1em;"> | ||
+ | <center> | ||
+ | <font style="line-height:170%"> | ||
+ | Alain Viel,<br> | ||
+ | Orianna Bretschger, | ||
+ | <br>Daad Saffarini, | ||
+ | <br>Helen White, | ||
+ | <br>Remy Chait, | ||
+ | <br>Natalie Farny, | ||
+ | <br>Christina Agapakis, | ||
+ | <br>Jason Lohmueller, | ||
+ | <br>Kim de Mora, | ||
+ | <br>Colleen Hansel, | ||
+ | <br>Peter Girguis, | ||
+ | <br>Christopher Marx, | ||
+ | <br>George Church, | ||
+ | <br>Jagesh V. Shah, | ||
+ | <br>Pam Silver, | ||
+ | <br>Tamara Brenner, | ||
+ | <br>Harvard BioLabs | ||
+ | </font> | ||
+ | </center> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
<div style="position: absolute; left: 580px; top: 300px; width:300px; padding: 1em;"> | <div style="position: absolute; left: 580px; top: 300px; width:300px; padding: 1em;"> | ||
<a href="https://2008.igem.org/Team:Harvard/Project"> | <a href="https://2008.igem.org/Team:Harvard/Project"> | ||
<img src="https://static.igem.org/mediawiki/2008/d/d3/Bactricitynutshell.jpg"></a> | <img src="https://static.igem.org/mediawiki/2008/d/d3/Bactricitynutshell.jpg"></a> | ||
</div> | </div> | ||
- | <div style="position: absolute; left: 640px; top: | + | <div style="position: absolute; left: 640px; top: 487px; width:180px; padding: .5em;"> |
<font size=1>Our project sought to combine the detecting capabilities of bacteria with the speed and ubiquity of electricity by creating an inducible system in Shewanella oneidensis MR-1 with an electrical output, allowing for the direct integration of this biosensor with electrical circuits via microbial fuel cells.</font> | <font size=1>Our project sought to combine the detecting capabilities of bacteria with the speed and ubiquity of electricity by creating an inducible system in Shewanella oneidensis MR-1 with an electrical output, allowing for the direct integration of this biosensor with electrical circuits via microbial fuel cells.</font> | ||
</div> | </div> | ||
- | <div style="position: absolute; left: 480px; top: | + | |
+ | |||
+ | <div style="position: absolute; left: 480px; top: 700px; padding: 1em;"> | ||
<a href="https://2008.igem.org/Team:Harvard/Shewie"> | <a href="https://2008.igem.org/Team:Harvard/Shewie"> | ||
- | <img src="https://static.igem.org/mediawiki/2008/ | + | <img src="https://static.igem.org/mediawiki/2008/6/65/Mainshewie.gif"></a> |
+ | </div> | ||
+ | <div style="position: absolute; left: 510px; top: 800px; width=200px; padding: 1em;"> | ||
+ | <font size=1> | ||
+ | Shewanella oneidensis MR-1 <br> | ||
+ | (fondly referred to as Shewie)<br> | ||
+ | is a metabolically versatile, <br> | ||
+ | and genetically tractable, gram-<br> | ||
+ | negative facultative anaerobe which under <br> | ||
+ | anaerobic conditions reduces a number of electron <br> | ||
+ | acceptors. This ability can be harnessed by <br> | ||
+ | microbial fuel cells to produce an electric current. | ||
+ | </font> | ||
</div> | </div> | ||
- | <div style="position: absolute; left: | + | <div style="position: absolute; left: 480px; top: 1000px; padding: 1em;"> |
<a href ="https://2008.igem.org/Team:Harvard/Hardware"> | <a href ="https://2008.igem.org/Team:Harvard/Hardware"> | ||
- | <img src="https://static.igem.org/mediawiki/2008/d/ | + | <img src="https://static.igem.org/mediawiki/2008/d/d8/Fuelcellfun.gif"> |
</a> | </a> | ||
+ | </div> | ||
+ | <div style="position: absolute; left: 550px; top: 1190px; width:200px; padding: 1em;"> | ||
+ | <font size=1> | ||
+ | The broad goal of our project was to engineer S. Oneidensis to produce a detectable change in electric current in response to some environmental stimulus. In order to observe such a reaction, our first task was to design an environment capable of housing bacteria and measuring current production. The answer? Microbial fuel cells. | ||
+ | </div> | ||
</div> | </div> | ||
<div style="position: absolute; left: 100px; top: 800px; padding: 1em;"> | <div style="position: absolute; left: 100px; top: 800px; padding: 1em;"> | ||
Line 80: | Line 137: | ||
<font color=#ffffff>ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss </font> | <font color=#ffffff>ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss ssssss </font> | ||
<br> | <br> | ||
+ | [[Image:hspacer.png]] | ||
<br> | <br> | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
Latest revision as of 04:38, 30 October 2008
Orianna Bretschger,
Daad Saffarini,
Helen White,
Remy Chait,
Natalie Farny,
Christina Agapakis,
Jason Lohmueller,
Kim de Mora,
Colleen Hansel,
Peter Girguis,
Christopher Marx,
George Church,
Jagesh V. Shah,
Pam Silver,
Tamara Brenner,
Harvard BioLabs
Our project sought to combine the detecting capabilities of bacteria with the speed and ubiquity of electricity by creating an inducible system in Shewanella oneidensis MR-1 with an electrical output, allowing for the direct integration of this biosensor with electrical circuits via microbial fuel cells.
Shewanella oneidensis MR-1
(fondly referred to as Shewie)
is a metabolically versatile,
and genetically tractable, gram-
negative facultative anaerobe which under
anaerobic conditions reduces a number of electron
acceptors. This ability can be harnessed by
microbial fuel cells to produce an electric current.
(fondly referred to as Shewie)
is a metabolically versatile,
and genetically tractable, gram-
negative facultative anaerobe which under
anaerobic conditions reduces a number of electron
acceptors. This ability can be harnessed by
microbial fuel cells to produce an electric current.
The broad goal of our project was to engineer S. Oneidensis to produce a detectable change in electric current in response to some environmental stimulus. In order to observe such a reaction, our first task was to design an environment capable of housing bacteria and measuring current production. The answer? Microbial fuel cells.