Team:Paris/Modeling/Histoire du modele
From 2008.igem.org
(→Why a double model is an absolutely necessary base to work with?) |
(→Why a double model is an absolutely necessary base to work with?) |
||
(4 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
{{Paris/Menu}} | {{Paris/Menu}} | ||
= Introduction= | = Introduction= | ||
- | Why did we come up with two models? We wondered whether this was the | + | Why did we come up with two models? We wondered whether this was the relevant question. Indeed, should not we rather question the choice of a single model? We shall here describe the story of our model, and show why it appeared absolutely essential to us to build this dual approach, where both models interact between themselves and beget constructive and purposeful exchanges with the wet lab. |
= Why a double model is an absolutely necessary base to work with? = | = Why a double model is an absolutely necessary base to work with? = | ||
Line 28: | Line 28: | ||
<br><br>Last but not least, it is essential to understand that this approach would require far more biological data. Then, alongside the mathematical model, we designed experiments that could be carried in order to determine each and every parameter involved in our equations. Unfortunately, these experiments had a huge cost as far as time is concerned, but we believe it to be most essential. This is one of the key interactions between the wet and dry labs we set up. Here, biologists and mathematicians could use their knowledge simultaneously! In fact, the utopia for a bio-modelist would be to have a library of data for the genes he uses at his disposal. The Greeks would have believed it impossible to know the interaction strength of the moon by simply opening a book! Let’s learn from sciences that go back to the Antiquity! We hereby bet that in a not too distant future, this will be the case with synthetic biology. We wished our approach to go beyond our Bacterio’Clock project! | <br><br>Last but not least, it is essential to understand that this approach would require far more biological data. Then, alongside the mathematical model, we designed experiments that could be carried in order to determine each and every parameter involved in our equations. Unfortunately, these experiments had a huge cost as far as time is concerned, but we believe it to be most essential. This is one of the key interactions between the wet and dry labs we set up. Here, biologists and mathematicians could use their knowledge simultaneously! In fact, the utopia for a bio-modelist would be to have a library of data for the genes he uses at his disposal. The Greeks would have believed it impossible to know the interaction strength of the moon by simply opening a book! Let’s learn from sciences that go back to the Antiquity! We hereby bet that in a not too distant future, this will be the case with synthetic biology. We wished our approach to go beyond our Bacterio’Clock project! | ||
- | = What model should | + | = What model should be chosen in which case? = |
It is not a mystery that the pet hate for a mathematician consists in determining the parameters he wishes to use. As we saw throughout the previous explanations, when one decides to go deeper in his mathematical translation of reality, he automatically adds new parameters. Assuming that for example one gets a 10% error when determining a parameter, what is the error made when he has three times more parameters? We directly understand that there is an optimization question that lies under this phenomenon. | It is not a mystery that the pet hate for a mathematician consists in determining the parameters he wishes to use. As we saw throughout the previous explanations, when one decides to go deeper in his mathematical translation of reality, he automatically adds new parameters. Assuming that for example one gets a 10% error when determining a parameter, what is the error made when he has three times more parameters? We directly understand that there is an optimization question that lies under this phenomenon. | ||
<br><br> | <br><br> |
Latest revision as of 12:47, 5 October 2008
IntroductionWhy did we come up with two models? We wondered whether this was the relevant question. Indeed, should not we rather question the choice of a single model? We shall here describe the story of our model, and show why it appeared absolutely essential to us to build this dual approach, where both models interact between themselves and beget constructive and purposeful exchanges with the wet lab. Why a double model is an absolutely necessary base to work with?As in the industry, where one is asked to propose various technical solutions while developing a project, we decided to propose two models in the mathematical description process. In fact, with a single mathematical model, the description and results obtained are most often biased, by the assumptions that ground the model.
What are the respective goals fulfilled?The topical question, as far as biological systems are concerned, is that yet there is no existing formalism: the “absolute and irrefutable truth” has not yet been found. For instance, everyone knows how to model gravity on earth as well as on the moon. However, no one has ever listed the way fliL behaved depending on the surrounding environment, because it depends on too many elements: which promoter, which concentrations, which pH, which temperature… Today this list seems endless.
BOB: based on bibliography approachDue to the time constraints, we needed to get quickly a firm ground on which we could work, so as to be able to understand how our biological system could behave and to give direction to the lab. We then needed a model for which we had an good idea of the parameters involved and that would enable us to understand the dynamics involved, as well as the respective influences of the different genes of the cascade.
APE: A Parameter Estimation ApproachThis approach met other demands. In fact, our APE approach was built so as to fit more closely to the biological reality. The goal here was to understand the biological process that occurred, and try to translate it into an exploitable mathematical formalism.
What model should be chosen in which case?It is not a mystery that the pet hate for a mathematician consists in determining the parameters he wishes to use. As we saw throughout the previous explanations, when one decides to go deeper in his mathematical translation of reality, he automatically adds new parameters. Assuming that for example one gets a 10% error when determining a parameter, what is the error made when he has three times more parameters? We directly understand that there is an optimization question that lies under this phenomenon.
|