Modular Synthetic Receptor System

From 2008.igem.org

(Difference between revisions)
Line 23: Line 23:
<h2>'''Material and Methods:'''</h2>
<h2>'''Material and Methods:'''</h2>
[[DNA-Origami|DNA-Origami]]
[[DNA-Origami|DNA-Origami]]
 +
[[Team:Freiburg_Cloning Strategy|Cloning Strategy]]
<h2>'''Results:'''</h2>
<h2>'''Results:'''</h2>
<h2>'''Discussion:'''</h2>
<h2>'''Discussion:'''</h2>

Revision as of 20:17, 27 October 2008


Freiburg2008 small header.gif



Home

The Team

Project Report

Parts

Modeling

Notebook

Safety

CoLABoration

Contents

Introduction:

This year´s main project is the attempt to create an "artificial receptor-system", featuring extra- and intracellular modules as well as suitable transmembrane regions. The intracellular domaine of our receptor-device is build by halves of split reporter-proteins that can reassemble and will then produce readable output, e. g. fluorescence. Each one of these protein-halves is connected to its extracellular domaine by a single-span transmembrane-helix. The extracellular or detecting domaine consists of a protein or peptide with the ability to bind a certain molecule.
Now, if a system with two matching receptors is presented these molecules in a strict, pairwise spatial arrangement, the receptor-devices are brought together, the split reporter-protein reassembles inside the cell and the output can be detected. We employ so-called "Origami-DNA" to create the exactly defined molecule-patterns that are needed to activate our receptors.
One of the main inspirations that lead to the idea of creating a synthetic receptor-like fusion protein is based on an immunologic study on the signaling pathway of the T-Cell-Receptor (TCR) that has been performed by Wolfgang Schamel at the Max-Planck-Institute for immunology, Freiburg[1]. In this study he used modified TCRs with Fab-Fragment-singlechains of Anti-NIP –Antibodies fused to their ß-domaines by a flexible linker that would present them on the cell´s surface. This modification would allow to investigate the influence of receptor-clustering on the intensity of the cell-signaling. It could been shown that there is a relation between the clustering of the antigen and, thus, of the receptors by presenting various peptides with certain amounts and arrangements of NIP-molecules as stimulus.
Anyway, this experiment was restricted by the one-dimensionality of the antigen-fused peptides; at this point, the Origami-DNA comes into play: Paul Rothemund had discovered that it is possible to shape M13-Phage single-strand-DNA simply adding oligonucleotides that would work as „brackets“ when complementing the long single-strand. In this way, one can generate DNA-squares of a certain size with „nods“ at certain distances.
One member of our team, Daniel Hautzinger, has recently finished his diploma-thesis on Origami-DNA and the possibilities of generating patterns on these square surfaces by modifying the Oligo-nucleotides that build up the nod-points. As the antigen NIP can as well be fused to these oligos, it was now possible to present strictly defined two-dimensional antigen-patterns to T-Cells carrying the modified receptors mentioned above.
This, again, made us come up with the idea of a transmembrane-fusion-protein that could be spatially arranged from outside the cell by the pattern on the Origami-DNA-surface.
Of course, the first extracellular domaine we had in mind was the anti-NIP-singlechain Schamel had used with his receptors. The first intracellular domaines should consist of the split-lactamase-halfes we designed as parts for last year´s iGEM, as this enzyme´s activity can be regained by complementation of the halves and detected by a fluorescent substrate. Now, we were looking for a single-span-transmembrane-protein; as the domaines of the Epidermal-Growth-Factor Receptor are well known, we chose to employ it´s transmembrane-helix and the signal-peptide mediating the construct´s insertion into the membrane.
Further modules we had in mind were an Anti-Fluorescein-singlechain and a fluorescein-binding variety of Lipocalin by Arne Skerra as extracellular „detectors“ as well as the complementing halves of each one of the split-fluorophores „Cerulean“ (cyan) and „Venus“ (yellow) as intracellular „reporters“. These split-fluorophores feature cross-compatibility between the N- and C-terminal halves (green fluorescence), enabling us to generate three different „outputs“ (yellow, blue, green) with only two molecules (NIP, FluA) building up the „input-pattern“ on the Origami-DNA-surface.

Material and Methods:

DNA-Origami Cloning Strategy

Results:

Discussion:

Literature:

Tabelle fuer Kathrin

Step 1

Vector

digestion: EcoRI + PstI

Insert

digestion: EcoRI + PstI

 

BBa-J52017

_CMV-promotor

Step 2

Vector

digestion: AgeI+SpeI

Insert

digestion: NgoMIV+SpeI

 

pMA-BBFR _ SPLIT-Linker

 

C-YFP

 

C-CFP

Step 3

Vector

digestion: AgeI+SpeI

Insert

digestion: NgoMIV+SpeI

 

pMA-BBFR _egfR-Tm

 

_  N-β-Lactamase

 

_  C-β-Lactamase

 

_ SPLIT-Linker_ C-YFP

 

_ N-YFP

 

_ SPLIT-Linker_ C-CFP

 

_ N-CFP

 

_ BB058 (Luciferase)

 

_ BB057  (Luciferase)

Step 4

Vector

digestion: AgeI+SpeI

Insert

digestion: NgoMIV+SpeI

 

pMA-BBFR _SP

 

_scFv-anti-NIP

 

_ Lipocalin

Step 5

Vector

digestion: AgeI+SpeI

Insert

digestion: NgoMIV+SpeI

 

pMA-BBFR _SP_ scFv-anti-NIP

and

pMA-BBFR-+SP_ Lipocalin

_GGGS-linker (produced by Klenow fill in)

Step 6

Vector

digestion: AgeI+SpeI

Insert

digestion: NgoMIV+SpeI

 

pMA-BBFR _SP_ scFv-anti-NIP _ GGGS-Li

and

pMA-BBFR _ SP_ Lipocalin _

GGGS-Li

_ egfR-Tm _  N-β-Lactamase

 

_ egfR-Tm _  C-β-Lactamase

 

_ egfR-Tm _ SPLIT-Linker_ C-YFP

 

_ egfR-Tm _ N-YFP

 

_ egfR-Tm _ SPLIT-Linker_ C-CFP

 

_ egfR-Tm _ N-CFP

 

_ egfR-Tm _ BB058 (Luciferase)

 

_ egfR-Tm _ BB057  (Luciferase)

Step 7

Vector

digestion: SpeI + PstI

Insert

  digestion: XbaI + PstI

 

BBa-J52017_CMV

 

_SP_ scFv-anti-NIP_GGGS-Li_egfR-Tm_N-β-Lactamase

 

_ SP_ scFv-anti-NI _GGGS-Li_ egfR-Tm_C-β-Lactamase

 

_ SP_ scFv-anti-NIP_GGGS-Li_ egfR-Tm_SPLIT-Linker_C-YFP

 

_ SP_ scFv-anti-NIP_GGGS-Li_ egfR-Tm_N-YFP

 

_ SP_ scFv-anti-NIP_GGGS-Li_ egfR-Tm_SPLIT-Linker_C-CFP

 

_ SP_ scFv-anti-NIP_GGGS-Li_ egfR-Tm_N-CFP

 

_ SP_ scFv-anti-NIP_GGGS-Li _ egfR-Tm_BB058 (Luciferase)

 

_ SP_ scFv-anti-NIP_GGGS-Li _ egfR-Tm_BB057  (Luciferase)

 

_ SP_ Lipocalin _GGGS-Li_ egfR-Tm_N-β-Lactamase

 

_ SP_ Lipocalin _GGGS-Li_ egfR-Tm_C-β-Lactamase

 

_ SP_ Lipocalin _GGGS-Li_ egfR-Tm_SPLIT-Linker_ C-YFP

 

_ SP_ Lipocalin _GGGS-Li_ egfR-Tm_N-YFP

 

_ SP_ Lipocalin _GGGS-Li_ egfR-Tm_SPLIT-Linker_ C-CFP

 

_ SP_ Lipocalin _GGGS-Li_ egfR-Tm_N-CFP

 

_ SP_ Lipocalin _GGGS-Li__ egfR-Tm _ BB058 (Luciferase)

 

_ SP_ Lipocalin _GGGS-Li__ egfR-Tm _ BB057  (Luciferase)

Freiburg08 FT3.png