Team:Paris/Modeling/Implementation
From 2008.igem.org
(Difference between revisions)
(→Parameters Finder for our Example) |
(→Parameters Finder for our Example) |
||
Line 25: | Line 25: | ||
<html><pre class="codeinput"> | <html><pre class="codeinput"> | ||
<span class="keyword">function</span> optimal_parameters = find_FP(X_data, Y_data, initial_parameters) | <span class="keyword">function</span> optimal_parameters = find_FP(X_data, Y_data, initial_parameters) | ||
- | <span class="comment">%gives the | + | <span class="comment">%gives the 'best parameters' involved in f4, f5, f6, f7 or f8 |
</span><span class="comment">%with FlhDC = 0 or FliA = 0 by least-square optimisation | </span><span class="comment">%with FlhDC = 0 or FliA = 0 by least-square optimisation | ||
</span> | </span> | ||
Line 44: | Line 44: | ||
options = optimset(<span class="string">'LevenbergMarquardt'</span>,<span class="string">'on'</span>,<span class="string">'TolX'</span>,1e-10,<span class="string">'MaxFunEvals'</span>,1e10,<span class="string">'TolFun'</span>,1e-10,<span class="string">'MaxIter'</span>,1e4); | options = optimset(<span class="string">'LevenbergMarquardt'</span>,<span class="string">'on'</span>,<span class="string">'TolX'</span>,1e-10,<span class="string">'MaxFunEvals'</span>,1e10,<span class="string">'TolFun'</span>,1e-10,<span class="string">'MaxIter'</span>,1e4); | ||
- | <span class="comment">%options | + | <span class="comment">%options for the function lsqcurvefit |
</span> | </span> | ||
optimal_parameters = lsqcurvefit( @(parameters, X_data) expr_pProm(parameters, X_data),... | optimal_parameters = lsqcurvefit( @(parameters, X_data) expr_pProm(parameters, X_data),... | ||
initial_parameters, X_data, Y_data, 1/10*initial_parameters, 10*initial_parameters, options ); | initial_parameters, X_data, Y_data, 1/10*initial_parameters, 10*initial_parameters, options ); | ||
- | <span class="comment">%search | + | <span class="comment">%search for the fittest parameters, between 1/10 and 10 times the initial |
</span><span class="comment">%parameters | </span><span class="comment">%parameters | ||
</span> | </span> | ||
<span class="keyword">end</span> | <span class="keyword">end</span> | ||
</pre></html> | </pre></html> |
Revision as of 22:22, 27 October 2008
Implementation
[Back to "Workflow on an Example"] We use Matlab for all implementations. Parameters Finder Programsthe datasThe experimental datas consist typically in two tables, X_data (various concentrations of the transcription factor) and Y_data (corresponding output values).
Parameters Finder for our ExampleWe just write here the annoted program find_FP that is used to estimate, for instance, the parameters in :
function optimal_parameters = find_FP(X_data, Y_data, initial_parameters) %gives the 'best parameters' involved in f4, f5, f6, f7 or f8 %with FlhDC = 0 or FliA = 0 by least-square optimisation %X_data = vector of given values of [FliA]i or [FlhDC]i (experimentally %controled) %Y_data = vector of experimentally measured values f4, f5, f6, f7 or f8 %corresponding of the X_data %initial_parameters = values of the parameters proposed by the literature % or simply guessed % = [beta, K -> (K)/(coef), n] function output = expr_pProm(parameters, X_data) for k = 1:length(X_data) output(k) = parameters(1)*hill(X_data(k), parameters(2), parameters(3)); end end options = optimset('LevenbergMarquardt','on','TolX',1e-10,'MaxFunEvals',1e10,'TolFun',1e-10,'MaxIter',1e4); %options for the function lsqcurvefit optimal_parameters = lsqcurvefit( @(parameters, X_data) expr_pProm(parameters, X_data),... initial_parameters, X_data, Y_data, 1/10*initial_parameters, 10*initial_parameters, options ); %search for the fittest parameters, between 1/10 and 10 times the initial %parameters end |