Team:LCG-UNAM-Mexico/Notebook/2008-October
From 2008.igem.org
Line 125: | Line 125: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="bodyText"><p>< | + | <td class="bodyText"><p> |
- | + | <p align="center"> <div align="justify"><strong>MODELING:</strong> </p>Hill Kinetics:<br> | |
- | + | <p>REFERENCE: Irwin H. Segel's <i>Enzyme kinetics: Behaviour and Analysis of rapid equilibrium and Steady-state Enzyme systems</i>. </p> | |
- | <p | + | <p> <strong>Multiple Inhibition Analysis</strong> </p><br> |
- | <p> <strong>Multiple Inhibition Analysis</strong> </p> | + | <div id="mjrt"><img src="https://static.igem.org/mediawiki/2008/6/63/Kinetics-Pollo1.jpg" /></div> |
- | < | + | |
- | + | ||
- | <div id="mjrt"><img src=" | + | |
<br /> | <br /> | ||
</p> | </p> | ||
Line 142: | Line 139: | ||
v/[Et]=([S]/Ks)kp/(1+2([I]/Ki)+([I]2/Ki2)+([S]/Ks)) <br /> | v/[Et]=([S]/Ks)kp/(1+2([I]/Ki)+([I]2/Ki2)+([S]/Ks)) <br /> | ||
v=([S]/Ks)kp[Et]/(1+2([I]/Ki)+([I]2/Ki2)+([S]/Ks))=([S]/Ks)Vmax/(1+2([I]/Ki)+([I]2/Ki2)+([S]/Ks)) </p> | v=([S]/Ks)kp[Et]/(1+2([I]/Ki)+([I]2/Ki2)+([S]/Ks))=([S]/Ks)Vmax/(1+2([I]/Ki)+([I]2/Ki2)+([S]/Ks)) </p> | ||
- | <p> < | + | <p> <i>With cooperativity: <br /> |
- | </ | + | </i>v=([S]/Ks)Vmax/(1+2([I]/Ki)+([I]2/aKi2)+([S]/Ks)) <br /> |
- | < | + | <span class="font-size: small">*a factor<br></span> </p> |
<p> It can be written in Hill's terms (if the cooperativity is strong). </p> | <p> It can be written in Hill's terms (if the cooperativity is strong). </p> | ||
- | <p> < | + | <p> <i>System: </i> cI repression</p> |
- | <p> < | + | <p> <i>Inhibitor:</i> cI:cI (I) <br /> |
- | < | + | <i>“Enzyme”: </i>ρ (ρ) <br /> |
- | < | + | <i>Substrate: </i>- <br /> |
- | < | + | <i>Product: </i>RcnA (P) </p> |
- | <p> < | + | <p> <i>Binding sites: </i>OR2 & OR1 <br /> |
I in OR1 -> ρI <br /> | I in OR1 -> ρI <br /> | ||
I in OR2 -> Iρ </p> | I in OR2 -> Iρ </p> | ||
<p> </p> | <p> </p> | ||
- | <div id="ce:j"><img src=" | + | <div id="ce:j"><img src="https://static.igem.org/mediawiki/2008/3/3e/Kinetics-Pollo2.jpg" /></div> |
</p> | </p> | ||
<p> </p> | <p> </p> | ||
Line 174: | Line 171: | ||
v/[ρt]= kp/(1+([I]/K5-1)+([I]/K5-2)+([I]2/K5)) <br /> | v/[ρt]= kp/(1+([I]/K5-1)+([I]/K5-2)+([I]2/K5)) <br /> | ||
v= kp[ρt]/(1+([I]/K5-1)+([I]/K5-2)+([I]2/K5)) </p> | v= kp[ρt]/(1+([I]/K5-1)+([I]/K5-2)+([I]2/K5)) </p> | ||
- | <p | + | <p> NOTE: We are not considering the fact that cI:cI will be sequestered by the promotor. This doesn't seem important since we only have 10 molecules of the promoter per cell, compared with 150 cI:cI molecules (without the AHL signal).</p> |
- | + | </div></td> | |
- | + | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 182: | Line 178: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="bodyText">< | + | <td class="bodyText"><div align="justify"> |
- | < | + | <p> <strong>MODELING:</strong> </p>Estimating the amount of AiiA per cell:<br> |
<p> AiiA is under the control of the lac promoter. The transcription and mRNA degradation rates help us estimate the amount of mRNA present on the cell. </p> | <p> AiiA is under the control of the lac promoter. The transcription and mRNA degradation rates help us estimate the amount of mRNA present on the cell. </p> | ||
<p> “The half-life of protein A is assumed to be around 10 minutes which is similar to what is used in Elowitz’s repressilator model [1]. Furthermore, we assume that a more aggressive degradation tail can enable half-times on the order of two minutes for protein B.” </p> | <p> “The half-life of protein A is assumed to be around 10 minutes which is similar to what is used in Elowitz’s repressilator model [1]. Furthermore, we assume that a more aggressive degradation tail can enable half-times on the order of two minutes for protein B.” </p> | ||
- | <p> Modeling the Lux/AiiA Relaxation Oscillator | + | <p> Modeling the Lux/AiiA Relaxation Oscillator by Christopher Batten </p> |
- | + | <p> In the paper AiiA is called protein B. Therefore the degradation rate for AiiA with an aggressive degradation tail is 0.0058/s. This would give us a lower limit. </p> | |
- | <p> In the paper AiiA is called protein B. Therefore the degradation rate for AiiA with an aggressive degradation tail is 0.0058 | + | <p> Transcription initiation rate, km </p> |
- | <p> | + | |
<p> Malan et al. (1984) measured the transcription initiation rate at P1 and report the following value: km ≈ 0.18min-1 </p> | <p> Malan et al. (1984) measured the transcription initiation rate at P1 and report the following value: km ≈ 0.18min-1 </p> | ||
<p> mRNA degradation rate, jM </p> | <p> mRNA degradation rate, jM </p> | ||
- | <p> Kennell and Riezman (1977), measured a lacZ mRNA half-life of 1.5 min: ξM = 0. | + | <p> Kennell and Riezman (1977), measured a lacZ mRNA half-life of 1.5 min: ξM = 0.46/min </p> |
<p> lacZ mRNA translation initiation rate, кB </p> | <p> lacZ mRNA translation initiation rate, кB </p> | ||
- | <p> From Kennell and Riezman (1977), translation starts every 3.2 s at the lacZ mRNA. This leads to the following translation initiation rate: кB ≈ 18. | + | <p> From Kennell and Riezman (1977), translation starts every 3.2 s at the lacZ mRNA. This leads to the following translation initiation rate: кB ≈ 18.8/min </p> |
<p> Santillán M. and Mackey M. C. (2004). Influence of Catabolite Repression and Inducer Exclusion on the Bistable Behavior of the lac Operon. Biophys J 86:1282–1292 </p> | <p> Santillán M. and Mackey M. C. (2004). Influence of Catabolite Repression and Inducer Exclusion on the Bistable Behavior of the lac Operon. Biophys J 86:1282–1292 </p> | ||
- | |||
- | |||
- | |||
<p> Simulating with simbiology, AiiA reaches stationary state at almost 3500 molecules per cell. </p> | <p> Simulating with simbiology, AiiA reaches stationary state at almost 3500 molecules per cell. </p> | ||
- | + | </div></td> | |
- | + | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 207: | Line 198: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="bodyText">< | + | <td class="bodyText"><div align="justify"> |
- | <p><strong> | + | <p><strong>MODELING:</strong></p>Stoichiometric Matrix:<br> |
<p> <em>Palsson, 2006</em></p> | <p> <em>Palsson, 2006</em></p> | ||
<p>Flux vector -> <strong>v</strong>=(v1, v2, …, vn) <br /> | <p>Flux vector -> <strong>v</strong>=(v1, v2, …, vn) <br /> | ||
Line 216: | Line 207: | ||
<p><strong>The four fundamental subspaces</strong></p> | <p><strong>The four fundamental subspaces</strong></p> | ||
<p> </p> | <p> </p> | ||
- | + | <div id="q_q6"><img src="https://static.igem.org/mediawiki/2008/2/23/FromPalssonM1.jpg" alt="" /></div> | |
- | <div id="q_q6"><img src=" | + | <i>Image from Systems Biology: Properties of Reconstructed Networks by Bernhard O. Palsson</i> |
<br /> | <br /> | ||
- | |||
</p> | </p> | ||
The vector produced by a linear transformation is in two orthogonal spaces (the column and left null spaces), called the <em>domain</em>, and the vector being mapped is also in two orthogonal spaces (the row and null spaces), called the <em>codomain</em> or the <em>range</em> of the transformation. | The vector produced by a linear transformation is in two orthogonal spaces (the column and left null spaces), called the <em>domain</em>, and the vector being mapped is also in two orthogonal spaces (the row and null spaces), called the <em>codomain</em> or the <em>range</em> of the transformation. | ||
- | <p>The vectors in the left null space (< | + | <p>The vectors in the left null space (<i>l</i><em>i</em>) represent mass conservation.</p> |
<p>The flux vector can be decomposed into a dynamic component and a steady-state component: <br /> | <p>The flux vector can be decomposed into a dynamic component and a steady-state component: <br /> | ||
v = vdyn + vss</p> | v = vdyn + vss</p> | ||
- | <p>The steady state component satisfies Svss=0 and < | + | <p>The steady state component satisfies Svss=0 and <i>v</si>ss is thus in the null space of <i>S.</i></p> |
- | + | </div></td> | |
- | + | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 233: | Line 222: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="bodyText">< | + | <td class="bodyText"><div align="justify"> |
- | <p>The higher the number of independent reaction vectors, the smaller the orthogonal left null space. The higher the number of independent reactions, the fewer conservation quantities exist.</p> | + | <b>MODELING:</b><br> |
- | <p> < | + | <p>The higher the number of independent reaction vectors, the smaller the orthogonal left null space. The higher the number of independent reactions, the fewer the conservation quantities exist.</p> |
+ | <p> <b>FUNDAMENTAL SUBSPACES OF S</b></p> | ||
<p>The dimensions of both the column and row space is r (<em>rank</em>; number of linearly independent rows and columns that the matrix contains). <br /> | <p>The dimensions of both the column and row space is r (<em>rank</em>; number of linearly independent rows and columns that the matrix contains). <br /> | ||
dim(Col(S)) = dim(Row(S)) = r <br /> | dim(Col(S)) = dim(Row(S)) = r <br /> | ||
Line 242: | Line 232: | ||
Similarly, the flux vector is n-dimensional; thus, <br /> | Similarly, the flux vector is n-dimensional; thus, <br /> | ||
dim(Null(S)) = n – r</p> | dim(Null(S)) = n – r</p> | ||
- | <p>< | + | <p><li> <em>Null space</em>. The null space of <i>S </i>contains all the steady-state flux distributions allowable in the network. The steady state is of much interest since most homeostatic states are close to being steady states.</li></p> |
- | <p>< | + | <p><li> <em>Row space</em>. The row space of <i>S </i>contains all the dynamic flux distributions of a network and thus the thermodynamic driving forces that change the rate of reaction activity. </li></p> |
- | <p>< | + | <p><li> <em>Left null space</em>. The left null space of <i>S </i>contains all the conservation relationships, or <em>time invariants</em>, that a network contains. The sum of conserved metabolites or conserved metabolic pools do not change with time and are combinations of concentration variables.</li></p> |
- | <p>< | + | <p><li> <em>Column space</em>. The column space of <i>S </i>contains all the possible time derivatives of the concentration vector and thus shows how the thermodynamic driving forces move the concentration state of the network.</li></p> |
<p><strong>Singular Value Decomposition</strong></p> | <p><strong>Singular Value Decomposition</strong></p> | ||
<p>SVD states that for a matrix S of dimension m× n and of rank r, there are orthonormal matrices U (of dimension m ×m) and V (of dimension n × n) and a matrix with diagonal elements ∑ = diag(σ1, σ2, ... , σr ) with σ1 ≥ σ2 ≥ ··· ≥ σr > 0 such that S = U∑VT</p> | <p>SVD states that for a matrix S of dimension m× n and of rank r, there are orthonormal matrices U (of dimension m ×m) and V (of dimension n × n) and a matrix with diagonal elements ∑ = diag(σ1, σ2, ... , σr ) with σ1 ≥ σ2 ≥ ··· ≥ σr > 0 such that S = U∑VT</p> | ||
- | <p>A non-negative real number σ is a < | + | <p>A non-negative real number σ is a <i>singular value</i> for <em>M</em> if and only if there exist unit-length vectors <em>u</em> in <em>Km</em> and <em>v</em> in <em>Kn</em> such that <br /> |
Mv=σu and M*u=σv<br /> | Mv=σu and M*u=σv<br /> | ||
- | The vectors <em>u</em> and <em>v</em> are called < | + | The vectors <em>u</em> and <em>v</em> are called <i>left-singular</i> and <i>right-singular vectors</i> for σ, respectively. <br /> |
In any singular value decomposition <br /> | In any singular value decomposition <br /> | ||
M=UΣV*<br /> | M=UΣV*<br /> | ||
the diagonal entries of Σ are necessarily equal to the singular values of <em>M</em>. The columns of <em>U</em> and <em>V</em> are, respectively, left- and right-singular vectors for the corresponding singular values.</p> | the diagonal entries of Σ are necessarily equal to the singular values of <em>M</em>. The columns of <em>U</em> and <em>V</em> are, respectively, left- and right-singular vectors for the corresponding singular values.</p> | ||
<p></p> | <p></p> | ||
- | <div id="vnuf"><img src=" | + | <div id="vnuf"><img src="https://static.igem.org/mediawiki/2008/b/bf/FromPalssonM2.jpg" /></div> |
- | <div id="jlkw"><img src=" | + | <i>Image from Systems Biology: Properties of Reconstructed Networks by Bernhard O. Palsson</i> |
+ | <div id="jlkw"><img src="https://static.igem.org/mediawiki/2008/8/86/FromPalssonM3.jpg" width="600" height="280"/></div> | ||
+ | <i>Image from Systems Biology: Properties of Reconstructed Networks by Bernhard O. Palsson</i> | ||
</p> | </p> | ||
- | <p> The columns of < | + | <p> The columns of <i>U </i>are called the <em>left singular vectors </em>and the columns of <i>V </i>are the <em>right singular vectors</em>. The columns of <i>U </i>and <i>V </i>give orthonormal bases for all the four fundamental subspaces of <i>S </i>(see Figure 8.3). The first <em>r </em> columns of <i>U </i>and <i>V </i>give orthonormal bases for the column and row spaces, respectively. The last<em>m</em>− <em>r </em>columns of <i>U </i>give an orthonormal basis for the left null space, and the last <em>n </em>− <em>r </em>columns or <i>V </i>give an orthonormal basis for the null space.</p> |
- | + | </div></td> | |
- | + | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 266: | Line 257: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
- | <td class="bodyText">< | + | <td class="bodyText"><div align="justify"> |
+ | <b>MODELING:</b><br> | ||
<p><strong>THE (RIGTH) NULL SPACE OF S</strong></p> | <p><strong>THE (RIGTH) NULL SPACE OF S</strong></p> | ||
- | <p>The right null space of < | + | <p>The right null space of <i>S </i>is defined by <br /> |
- | < | + | <i>Sv</i>ss = <i>0 <br /> |
- | </ | + | </i>Thus, all the steady-state flux distributions, <strong>v</strong>ss, are found in the null space. The null space has a dimension of <em>n </em>− <em>r</em>. Note that <strong>v</strong>ss must be orthogonal to all the rows of <strong>S </strong>simultaneously and thus represents a linear combination of flux values on the reaction map that sum to zero.</p> |
<p><strong>Mathematics versus biology</strong> </p> | <p><strong>Mathematics versus biology</strong> </p> | ||
- | <p>< | + | <p><li> The null space represents all the possible functional, or phenotypic, states of a network.</li></p> |
- | <p>< | + | <p><li> A particular point in the polytope represents one network function or one particular phenotypic state.</li></p> |
- | <p>< | + | <p><li> As we will see in Chapter 16, there are equivalent points in the cone that lead to the same overall functional state of a network. Biologically, such conditions are called <em>silent phenotypes</em>.</li></p> |
- | <p>< | + | <p><li> The edges of the flux cone are the unique extreme pathways. Any flux state in the cone can be decomposed into the extreme pathways. The unique set of extreme pathways thus gives a mathematical description of the range of flux levels that are allowed.</li></p> |
<p>- The stoichiometric matrix has a null space that corresponds to a linear combination of the reaction vectors that add up to zero; so-called link-neutral combinations.</p> | <p>- The stoichiometric matrix has a null space that corresponds to a linear combination of the reaction vectors that add up to zero; so-called link-neutral combinations.</p> | ||
<p>- The orthonormal basis given by SVD does not yield a useful biochemical interpretation of the null space of the stoichiometric matrix.</p> | <p>- The orthonormal basis given by SVD does not yield a useful biochemical interpretation of the null space of the stoichiometric matrix.</p> | ||
<p><strong>THE LEFT NULL SPACE OF S</strong></p> | <p><strong>THE LEFT NULL SPACE OF S</strong></p> | ||
- | <p | + | <p>As with the (right) null space, the choice of basis for the left null space is important in describing its contents in biochemically and biologically meaningful terms.</p> |
<p>…may represent mass conservation…</p> | <p>…may represent mass conservation…</p> | ||
<p> <strong>THE ROW AND COLUMN SPACE OF S</strong></p> | <p> <strong>THE ROW AND COLUMN SPACE OF S</strong></p> | ||
<p>The column and row spaces of the stoichiometric matrix contain the concentration time derivatives and the thermodynamic driving forces, respectively.</p> | <p>The column and row spaces of the stoichiometric matrix contain the concentration time derivatives and the thermodynamic driving forces, respectively.</p> | ||
- | + | </div></td> | |
- | + | ||
</tr> | </tr> | ||
- | |||
- | |||
- | |||
<tr> | <tr> | ||
<td class="bodyText"><p>-</p> | <td class="bodyText"><p>-</p> |
Revision as of 19:45, 28 October 2008
LCG-UNAM-Mexico | ||||||||||||||||||||||||||||||||||
iGEM 2008 TEAM | ||||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||