Team:Paris/Perspectives
From 2008.igem.org
(→B.Artificial virus factory) |
(→B.Artificial virus factory) |
||
Line 41: | Line 41: | ||
The FIFO device provides also a circuit useful to coordinate the self-assembly of molecular structure. A possible canevas for the production of synthetic virus?</font> | The FIFO device provides also a circuit useful to coordinate the self-assembly of molecular structure. A possible canevas for the production of synthetic virus?</font> | ||
- | + | <font color=red> Indeed a virus such as HIV, displays ans organised sequential activation of genes that could be controled by a FIFO circuit. ''ARE YOU SURE OF THIS''</font> | |
[[Image:HIV.jpg|center]] | [[Image:HIV.jpg|center]] | ||
Line 47: | Line 47: | ||
Fig2: genetic organization of HIV virus | Fig2: genetic organization of HIV virus | ||
- | HIV can be produce by sequential expression of 3 genes gag,env and pol (Fig.2)those genes | + | |
+ | HIV can be produce by sequential expression of 3 genes gag,env and pol (Fig.2), those genes are be cleaved by protease P10 and then the subunits of the virus will self-assembled into mature virus. <font color=red>A re-enginered virus could be based on a FIFO setup where gag p10 is first expressed and Env the last (without Pol to avoid pathogenicity). In this case | ||
+ | |||
+ | * when genes 1 and 2 are expressed, the protease P10 cleaves gag that self-assembles. | ||
+ | |||
+ | * when 123 is expressed, Env is cleaved and self assembles with the products of gag and P10 that have already been produced. | ||
+ | |||
+ | * finaly, when 23 is activated alone, this increases the quantity of subunits delivered from the clivage of Env. ''I DO NOT UNDERSTANT'' | ||
+ | |||
+ | ''In this setup I maybe understand the sequential order of activation, but I do not see why there should be the same order of inactivation. Justify please'' | ||
+ | |||
+ | |||
+ | </font> | ||
In our case, we will expressed gag p10 and finaly Env (without Pol to avoid pathogenicity) the FIFO in this case will be essential. | In our case, we will expressed gag p10 and finaly Env (without Pol to avoid pathogenicity) the FIFO in this case will be essential. | ||
Revision as of 00:01, 29 October 2008
Un petit texte pour expliquer la motivation de cette page ne serait-ce que tout simplement: On this page we report some possible uses of the FIFO device in synthetic applications.
Biosynthetic Bottum-up approachC'est un grand titre de section, où le titre d'une section normale qui manque? A.DNA nanocar factoryThe field of artificial molecular machines and motors is growing at an astonishing rate and is attracting a great deal of interest in nanoscience. REFERENCES Research in the last decade has shown that species made of components like DNA or proteins are attractive candidates. FIFO devices could be applied to coordinate sequences of fabrication or operation steps of nanomachines. For instance, the bottom-up fabrication of DNA nano-cars ! Our aims is to build DNA nanocars by a bottom-up approche! You have to explain what you mean by "produce energy in vitro". What energy does it use? to convert into what other energy? or to use in what way? Also, why in vitro? Do you plan to use our system in cell-free extracts or in living cells? Our system Which system ? Explainis more efficient than a classic system because the FIFO order is very important: the first part will bind by complementarity with part 2 this new part will make the binding site for part 3. Which parts ? Describe. The figure below is too small Fig.1:biosynthesis by sequential expression of 3 DNA origamis If we add after purifications of our car a complementary miRNA to the loop, the competition of the miRNA will open the DNA strands by broking the hydrogen backbound this processe will delivered energy , the instability of the miRNA may make this processe reversible. Please explain more, developing in particular the role of FIFO. To my opinion in this prospective part it does not matter to justify everything, the central point is to present meaningful SCENARIOS for the application of the FIFO In conclusion, these kinds of DNA structures can be suitable, reversible and metastable DNA fuels. How will they move? I doubt that turning their wheels will be of any help... B.Artificial virus factoryWe can also produce a lot of differentes kinds of self-assembly structures like virus for example,HIV: No, you can not produce... You can say (possibly)... The FIFO device provides also a circuit useful to coordinate the self-assembly of molecular structure. A possible canevas for the production of synthetic virus? Indeed a virus such as HIV, displays ans organised sequential activation of genes that could be controled by a FIFO circuit. ARE YOU SURE OF THIS Fig2: genetic organization of HIV virus
In this setup I maybe understand the sequential order of activation, but I do not see why there should be the same order of inactivation. Justify please
If you ask us why? For 3 main reasons :
Metabolic engineering of polyhydroxyalkanoate biosynthesis pathwaysHuman overpopulation combined with the current lifestyle urges the rational, efficient, and sustainable use of natural resources to produce environmentally friendly plastic materials such as polyhydroxyalkanoic acids (PHAs), whose production/degradation cycle reduces undesirable wastes and emissions. Our study is a new metabolic strategy to generate PHA-hyperproducer strains, that have the properties to be a sequential metabolic pathway, we believe the sequential expression may increases the production of purified PHA. Our strategy consists on replacing the RFP,CFP and YFP genes by the PhaA ,PhaB and PhaC genes in our final system (containing oscillation,FIFO,synchronisation modules). This strategy is more efficient than a constitutive activation for 3 main reasons:
Again, you cannot just state this boldly without constructing an argument. You never explain why your system is better than simply expressing all the genes continuously at a lower level More generally, on this whole page: We don't expect you to give very detailed projects. You just need to give simple ideas for which the interest of the FIFO seems obvious (or at least you need to try making it seem obvious). We are not so much interested in the precise mechanisms or genes involved, but rather in the principles that make your projects interesting. Bibliography
Paul W. K. Rothemund
Paul W. K. Rothemund
Suvir Venkataraman, Robert M. Dirks, Paul W. K. Rothemund, Erik Winfree, Niles A. Pierce.
Georg Seelig, Bernard Yurke, Erik Winfree. |